无尽的数学
基础数学研究【gtec@gleaf.cc】
展开
-
一维优化问题-斐波那契法
基于斐波那契数列(Fibonacci sequence)来逐步缩小一维优化问题搜索区间。原创 2025-03-24 22:50:56 · 279 阅读 · 0 评论 -
模拟退火优化算法
模拟退火算法(Simulated Annealing, SA)是一种通用的概率优化算法,用于在给定的大搜索空间内寻找问题的近似全局最优解。该算法灵感来源于物理中固体物质的退火过程,即加热物体后再慢慢冷却,以达到最低能量状态的过程。在算法中,“温度”参数控制搜索过程的随机性,随着“温度”的逐渐降低,算法从广泛搜索逐渐转变为局部搜索,以期找到全局最优解。原创 2025-03-15 20:22:38 · 1036 阅读 · 0 评论 -
HPC综合-心得与笔记【7】
复指数,幂函数原创 2025-03-07 21:40:38 · 151 阅读 · 0 评论 -
HPC综合-心得与笔记【14】
等价关系原创 2025-03-15 20:03:29 · 128 阅读 · 0 评论 -
HPC综合-心得与笔记【11】
# 相对论## 世界面,同时面,同时线,世界线- 世界线 - 世界线是物体在四维时空(三维空间 + 时间)中的运动轨迹。 - 在三维图中,简化为一维空间$x$和时间$t$ - 世界线是一条曲线,表示物体在不同时间的位置。原创 2025-03-10 19:55:11 · 393 阅读 · 0 评论 -
HPC综合-心得与笔记【13】
复函数导数(偏导)原创 2025-03-11 19:27:43 · 323 阅读 · 0 评论 -
HPC综合-心得与笔记【18】
Python的heapq模块提供了堆队列算法的实现,利用它来存储边, 默认是最小堆。优先队列(最小堆)用于存储与生成树相连的边,并确保每次都能快速取出边权最小的边。最小生成树: 在加权无向图中找到一棵包含所有节点的树,且这棵树的边权总和最小。生成树:一个连通无向图的生成树是包含图中所有节点的树,且树中的边都来自原图。贪心策略:每次选择当前距离起点最近的节点,更新其邻接节点的距离。创建一个优先队列(最小堆),存储与生成树相连的边。加权图:图中的每条边都有一个权重(或成本)。选择一个起始节点,将其加入生成树。原创 2025-03-19 21:36:18 · 231 阅读 · 0 评论 -
HPC综合-心得与笔记【19】
距离数组dist,设置起点距离为0,其他节点距离为无穷大(∞)用最小堆创建优先队列,将起点放入队列。从队列中取出当前距离最小的节点u。遍历u的每个邻接节点v,计算从起点到v的路径长度:alt = dist[u] + weight(u, v)。如果alt < dist[v],更新dist[v]为alt,并将v加入队列。原创 2025-03-19 21:41:38 · 260 阅读 · 0 评论 -
HPC综合-心得与笔记【8】
复三函数与双曲复函数原创 2025-03-07 22:18:28 · 382 阅读 · 0 评论 -
HPC综合-心得与笔记【1】
# 时域转频域信号## 傅里叶变换将时域信号转换为频域信号- **连续傅里叶变换**:$$ F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \, dt$$原创 2025-03-02 21:44:27 · 1214 阅读 · 0 评论 -
HPC综合-心得与笔记【2】
傅里叶变换理论原创 2025-03-02 23:35:01 · 151 阅读 · 0 评论 -
HPC综合-心得与笔记【20】
线性规划图解法原创 2025-03-22 21:31:14 · 312 阅读 · 0 评论 -
HPC综合-心得与笔记【5】
核原创 2024-10-19 08:28:43 · 746 阅读 · 0 评论 -
HPC综合-心得与笔记【4】
是连续且分段光滑的函数(即导数存在且分段连续)=>傅里叶级数一致收敛于。,在间断点处收敛于左右极限的平均值。),则傅里叶级数在均方意义下收敛于。的连续点处逐点收敛于。是平方可积的函数(即。原创 2025-03-04 23:03:19 · 874 阅读 · 0 评论 -
HPC综合-心得与笔记【17】
原问题(Primal Problem)对偶问题(Dual Problem)目标函数最小化cTxc^T xcTx最大化bTyb^T ybTy变量变量xxxn×1n \times 1n×1向量)对偶变量yyym×1m \times 1m×1向量)约束条件约束矩阵AAAm×nm \times nm×n约束矩阵ATA^TATn×mn \times mn×m右端项bbbm×1m \times 1m×1向量)目标函数系数cc。原创 2025-03-19 00:10:35 · 1417 阅读 · 0 评论 -
HPC综合-心得与笔记【10】
切向量、主法向量、从法向量、切平面、法平面、从切平面和密切平面原创 2025-03-09 21:28:25 · 126 阅读 · 0 评论 -
HPC综合-心得与笔记【9】
挠率是描述空间曲线扭转程度的重要几何量。描述空间曲线扭转程度的几何量。它表示曲线偏离密切平面的速率。挠率与曲线的从法向量。原创 2025-03-09 21:12:14 · 598 阅读 · 0 评论 -
HPC综合-心得与笔记【12】
曲线在某一点与自身相交的点,存在s1s_1s1不等于s2s_2s2,使得r(s1)=r(s2)\mathbf{r}(s_1) = \mathbf{r}(s_2)r(s1)=r(s2)。x(s)=sins,y(s)=sin2s.x(s) = \sin s, \quad y(s) = \sin 2s.x(s)=sins,y(s)=sin2s.切向量T(s)=drds=(dxds,dyds)=(coss,2cos2s).\mathbf{T}(s) = \frac{d\mathbf{r}}{原创 2025-03-11 23:21:40 · 1024 阅读 · 0 评论 -
HPC综合-心得与笔记【16】
满同态ϕG→Hϕh∈Hg∈GϕghϕGHϕH≅Gkerϕ)核ϕG→HϕeHHkerϕg∈G∣ϕgeH}kerϕ)Gkerϕ◃GH商群N◃GGgNgNGNGNgN∣g∈G}(g1N⋅g2Ng1g2NGNGNNkerϕ)GN≅Imϕ)phiG→HGkerϕ≅Imϕ)ϕGkerϕ≅Hkerϕ)ϕGkerϕ)Imϕ。原创 2025-03-15 21:54:56 · 831 阅读 · 0 评论 -
HPC综合-心得与笔记【6】
周期、复指数、基波、频率原创 2025-03-05 15:01:54 · 142 阅读 · 0 评论 -
HPC综合-心得与笔记【3】
# 傅里叶变换详解## 绘制时域图和频域图原创 2025-03-02 23:31:00 · 1147 阅读 · 0 评论 -
3D Graphics Engine综合-心得与笔记【2】
坐标系原创 2025-03-12 20:01:14 · 124 阅读 · 0 评论 -
3D Graphics Engine综合-心得与笔记【1】
向量原创 2025-03-12 11:48:19 · 454 阅读 · 0 评论 -
3D Graphics Engine综合-心得与笔记【3】
三点共线的充要条件是任意两点的斜率相等,正是三点共线的斜率条件。共线,意味着它们的方向相同或相反,且存在一个实数。外分点:分线点在线段 AB的延长线上。,其中 m 和 n 是正实数。内分点:分线点在线段 AB上。将一条线段分成特定比例的点(原创 2025-03-12 20:51:48 · 880 阅读 · 0 评论 -
3D Graphics Engine综合-心得与笔记【4】
# 正交化(Orthogonalization)## 理论- 指的是通过某种变换或调整,使向量、函数或系统之间的关系变得正交- 将一组向量转换为正交向量组的过程。最常见的是格拉姆-施密特正交化(Gram-Schmidt Process)。 - 给定一组线性无关的向量$\{v_1, v_2, \dots, v_n\}$,通过以下步骤将其转换为正交向量组 $\{u_1, u_2, \dots, u_n\}$: - 第一个向量保持不变:$u_1 = v_1$。 - 后续向量 $v_k$,减去它在*原创 2025-03-12 23:19:40 · 954 阅读 · 0 评论 -
概率原理-心得笔记【2】
期望与线性泛函,事件独立与积测度原创 2025-04-02 23:31:34 · 10 阅读 · 0 评论 -
概率原理-心得笔记【1】
随机变量的数学含义原创 2025-04-02 14:45:01 · 19 阅读 · 0 评论 -
数学综合-心得笔记【274】
局部可积与lusin定理原创 2025-04-02 00:20:57 · 12 阅读 · 0 评论 -
数学综合-心得笔记【273】
贝尔$\sigma$代数原创 2025-04-02 00:18:53 · 14 阅读 · 0 评论 -
数学综合-心得笔记【269】
标准正态分布原创 2025-03-26 23:11:59 · 22 阅读 · 0 评论 -
数学综合-心得笔记【268】
邻域、图、树原创 2025-03-23 21:34:33 · 9 阅读 · 0 评论 -
C++智能指针
- 独占所有权- 同一时间只能有一个unique_ptr对象管理。- 不可拷贝,可通过std::move转移所有权。原创 2025-01-16 18:48:23 · 288 阅读 · 0 评论 -
数学综合-心得笔记【247】
拓扑的基是一组开集,通过它们的并集可以生成拓扑空间中的所有开集。是所有 ( \mathcal{B}$中集合的并集组成的集合族。的某些子集组成的集合,满足拓扑的公理)。通过基可以生成拓扑空间中的所有开集。用于描述拓扑空间的开集结构。原创 2025-03-20 21:45:45 · 103 阅读 · 0 评论 -
数学综合-心得笔记【240】
超图原创 2024-11-03 22:47:30 · 680 阅读 · 0 评论 -
数学综合-心得笔记【228】
线性规划原创 2024-09-28 07:23:33 · 915 阅读 · 0 评论 -
数学综合-心得笔记【167】
矩阵与行列式原创 2025-03-14 13:31:07 · 28 阅读 · 0 评论 -
数学综合-心得笔记【133】
赋范空间完备化原创 2024-08-13 09:41:18 · 1115 阅读 · 0 评论 -
数学综合-心得笔记【84】
无处稠密原创 2024-09-20 20:14:01 · 723 阅读 · 0 评论 -
Python计算【35】
F分布原创 2025-02-24 21:26:29 · 134 阅读 · 0 评论 -
Python计算【34】
PyMC是一个专注于高级马尔科夫链蒙特卡洛(MCMC)和变分推断(VI)算法的Python包。原创 2025-02-18 23:44:53 · 20 阅读 · 0 评论