动态规划问题之闫式DP分析法总结

闫式DP分析法

参考视频: https://www.bilibili.com/video/BV1X741127ZM/?spm_id_from=333.788.videocard.0

分析思想

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8za2iVGq-1605705400227)(https://note.youdao.com/yws/api/personal/file/1208AC100C214D67A123AB26FB2ABB9B?method=download&shareKey=2fe85c9ad77c808886878f00a7b88dd4)]

  • DP问题一般是求若干有限集合中的最值问题,并且此类问题存在子问题重叠(Overlap-subproblems),如果通过暴力枚举每种可能解决问题,那么将会有大量重复的计算;如果从集合角度来分析DP问题,每次枚举一个集合并且利用子问题重叠特性,将子问题的解存储下来,可以大大提高效率;
  • DP问题的核心是状态集合 f(i) 的定义,在状态及转移计算中,划分子集的依据:寻找最后一个不同点,即处理最后一个子集的选择
背包问题
import java.util.ArrayList;
import java.util.Scanner;

/**
 * 有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次(完全背包可以使用任意次)。
 *
 * 第 i 件物品的体积是 vi,价值是 wi。
 *
 * 求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
 * 输出最大价值。
 *
 * 输入格式
 * 第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
 *
 * 接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
 *
 * 输出格式
 * 输出一个整数,表示最大价值。
 */
public class Knapsack{

    // 1. 01背包问题的朴素解法
    private static void simpleSolutionOf01() {
        int N = 0;
        int V = 0;
        int[] v = new int[0];
        int[] w = new int[0];

        // 读取操作
        try (
                Scanner reader = new Scanner(System.in) // 读入数据的代码(基于正则表达式的文本扫描器)
        ) {
            N = reader.nextInt(); // 物品的数量为N
            V = reader.nextInt(); // 背包的容量为V
            v = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的体积;
            w = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的价值;

            for (int i = 1 ; i <= N ; i++){
                // 接下来有 N 行,每行有两个整数:v[i],w[i],用空格隔开,分别表示第i件物品的体积和价值
                v[i] = reader.nextInt();
                w[i] = reader.nextInt();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }

        // 正式工作的代码
        /*
        定义状态集合为 f(i,j) 含义:在只能选择前 i 个物品,背包容量为 j 的情况下的所有方案的集合;
        状态集合为 f(i,j) 属性:所有方案中价值最大的值;

        具体实现为一个二阶矩阵f[N+1][V+1],这里之所以要 N+1 和 V+1,
        是因为第 0 行表示只能选择第 0 个物品的时候,即没有物品的时候,第 0 列表示背包的体积为 0 的时候,即不能装任何东西的时候;
        f[i][j]表示在只能选择前 i 个物品,背包容量为 j 的情况下,背包中物品的最大价值,对于f[i][j]有两种情况:
        1. 不选择当前的第i件物品/第i件物品比背包容量要大,则f[i][j] = f[i-1][j]
        2. 选择当前的第i件物品(潜在要求第i件物品体积小于等于背包总容量),则能装入的物品最大价值为:
            当前物品的价值 加上 背包剩余容量在只能选前 i-1 件物品的情况下的最大价值
            f[i][j] = f[i-1][j-v[i]] + w[i]
        f[i][j]在两种情况中选择比较大的情况作为当前的最优解,即:
        if(j >= v[i]):
            f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i])
        else:
            f[i][j] = f[i-1][j]
        */
        int[][] f = new int[N+1][V+1];

        for(int i = 1; i <= N; i++){
            for(int j = 0; j <= V; j++){
                if(j >= v[i] ){
                    f[i][j] = Math.max(f[i-1][j], f[i-1][j-v[i]] + w[i]);
                }else{
                    f[i][j] = f[i-1][j];
                }
            }
        }

        System.out.println(f[N][V]);
    }

    // 2. 01背包问题的空间优化解法
    private static void spaceOptSolutionOf01() {
        int N = 0;
        int V = 0;
        int[] v = new int[0];
        int[] w = new int[0];

        try (
                Scanner reader = new Scanner(System.in) // 读入数据的代码(基于正则表达式的文本扫描器)
        ) {
            N = reader.nextInt(); // 物品的数量为N
            V = reader.nextInt(); // 背包的容量为V
            v = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的体积;
            w = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的价值;

            for (int i = 1 ; i <= N ; i++){
                // 接下来有 N 行,每行有两个整数:v[i],w[i],用空格隔开,分别表示第i件物品的体积和价值
                v[i] = reader.nextInt();
                w[i] = reader.nextInt();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }

        // 正式工作的代码
        /*
        f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i]),可以看出f[i][j]的值只跟前一行(i-1)的值有关,所以最少只需要一行数组存储即可;
        而且 j 总是在前一行从后往前找(j or j-v[i]),即只需要旧的一行前面的值,即从后往前更新能保证前一行前面可能被用到的值不被修改;

        所以省去第一维下标后:
        f[j] = max(f[j], f[j-v[i]] + w[i])
        */
        int[] f = new int[V+1];

        for(int i = 1; i <= N; i++){
            for(int j = V; j >= 0; j--){  // 这里改成从后往前
                if(j >= v[i] ){
                    f[j] = Math.max(f[j], f[j-v[i]] + w[i]);
//                }else{
//                    f[j] = f[j];  // 这两行也可以省略了
                }
            }
        }

        System.out.println(f[V]);
    }

    /*
    完全背包问题:
        无论是朴素的还是空间优化的完全背包问题 相比于 01背包问题都只需要改动一行代码,但其背后的思想有很大不同
     */

    // 3. 完全背包问题的朴素解法
    private static void simpleSolutionOfComplete() {
        int N = 0;
        int V = 0;
        int[] v = new int[0];
        int[] w = new int[0];

        try (
                Scanner reader = new Scanner(System.in) // 读入数据的代码(基于正则表达式的文本扫描器)
        ) {
            N = reader.nextInt(); // 物品的数量为N
            V = reader.nextInt(); // 背包的容量为V
            v = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的体积;
            w = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的价值;

            for (int i = 1 ; i <= N ; i++){
                // 接下来有 N 行,每行有两个整数:v[i],w[i],用空格隔开,分别表示第i件物品的体积和价值
                v[i] = reader.nextInt();
                w[i] = reader.nextInt();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }

        // 正式工作的代码
        /*
        状态转移方程:
        01背包: f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i])
        完全背包:f[i][j] = max(f[i-1][j], f[i][j-v[i]] + w[i])

        完全背包状态转移方程推导:
        在01背包中,f[i][j]只有两种情况,选0个 or 选1个,而在完全背包问题中,f[i][j]有很多种可能,选 0 or 1 or 2 or ... or k ... 直到超过容量,所以:
            f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i], f[i-1][j-2v[i]] + 2w[i], ... , f[i-1][j-kv[i]] + kw[i], ...) 一直到超过容量
        用 j-v[i] 对 j 进行变量替换得:
            f[i][j-v[i]] = max(f[i-1][j-v[i]], f[i-1][j-2v[i]] + w[i], f[i-1][j-2v[i]] + 2w[i], ... , f[i-1][j-(k+1)v[i]] + kw[i], ...)
        所以:
            f[i][j] = max(f[i-1][j], f[i][j-v[i]] + w[i])
        */
        int[][] f = new int[N+1][V+1];

        for(int i = 1; i <= N; i++){
            for(int j = 0; j <= V; j++) {
                if (j >= v[i])
                    f[i][j] = Math.max(f[i-1][j], f[i][j-v[i]] + w[i]);  // 相比于 朴素的01背包解法只需要改动这里的状态转移方程
                else
                    f[i][j] = f[i-1][j];
            }
        }

        System.out.println(f[N][V]);
    }

    // 4. 完全背包问题的空间优化解法
    private static void spaceOptOfComplete() {
        int N = 0;
        int V = 0;
        int[] v = new int[0];
        int[] w = new int[0];

        try (
                Scanner reader = new Scanner(System.in) // 读入数据的代码(基于正则表达式的文本扫描器)
        ) {
            N = reader.nextInt(); // 物品的数量为N
            V = reader.nextInt(); // 背包的容量为V
            v = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的体积;
            w = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的价值;

            for (int i = 1 ; i <= N ; i++){
                // 接下来有 N 行,每行有两个整数:v[i],w[i],用空格隔开,分别表示第i件物品的体积和价值
                v[i] = reader.nextInt();
                w[i] = reader.nextInt();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }

        // 正式工作的代码
        /*
        01背包: f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i])
        完全背包:f[i][j] = max(f[i-1][j], f[i][j-v[i]] + w[i])

        看上式可以看出两个状态转移方程只有一个地方不同 —— f[i-1][j-v[i]] 和 f[i][j-v[i]];
        在01背包中,   j 必须从大到小,是因为 f[i-1][j-v[i]] 会用到更新前(i-1)行前面的值,为了不修改它,所以要从后往前更新
        而在完全背包中,j 必须从小到大,是因为 f[i][j-v[i]]   会用到更新后( i )行前面的值,为了及时更新它,所以要从前往后更新

        所以省去第一维下标后(跟01相同):
        f[j] = max(f[j], f[j-v[i]] + w[i])
        */
        int[] f = new int[V+1];

        for(int i = 1; i <= N; i++){
            for(int j = 0; j <= V; j++)    // 只需要把这里改成从小到大
                if(j >= v[i] )
                    f[j] = Math.max(f[j], f[j-v[i]] + w[i]);  // 虽然这里跟 01 完全一样,但它们背后的含义是不同的,省去的下标不完全相同
        }

        // 等价于:
        /*
        for(int i = 1; i <= N; i++){
            for(int j = v[i]; j <= V; j++)
                f[j] = Math.max(f[j], f[j-v[i]] + w[i]);
        }
         */

        System.out.println(f[V]);
    }

    // 5. 多重背包问题的空间优化解法
    private static void spaceOptOfMultiple() {
        int N = 0;
        int V = 0;
        int[] v = new int[0];
        int[] w = new int[0];
        int[] s = new int[0];

        try (
                Scanner reader = new Scanner(System.in) // 读入数据的代码(基于正则表达式的文本扫描器)
        ) {
            N = reader.nextInt(); // 物品的数量为N
            V = reader.nextInt(); // 背包的容量为V
            v = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的体积;
            w = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的价值;
            s = new int[N+1] ;    // 一个长度为N的数组,第i个元素表示第i个物品的数量;

            for (int i = 1 ; i <= N ; i++){
                // 接下来有 N 行,每行有三个整数:v[i],w[i],s[i],用空格隔开,分别表示第i件物品的体积、价值和数量
                v[i] = reader.nextInt();
                w[i] = reader.nextInt();
                s[i] = reader.nextInt();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }

        // 正式工作的代码
        /*
        01背包: f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i])
        完全背包:f[i][j] = max(f[i-1][j], f[i][j-v[i]] + w[i])
        多重背包:

        在01背包问题中只有两种选择,选0 or 选1,所以状态转移方程为:
            f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i]),
        而在多重背包中,存在多重可能,一个最简单的思路就是在01的基础上拓展,选0 or 选1 or 选2 ... 选k,所以状态转移方程为:
            f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i], f[i-1][j-2v[i]] + 2w[i] ,..., f[i-1][j-kv[i]] + kw[i]),
        所以只需要在 01背包 的基础上加个 0-k 的循环即可。

        省去第一维下标后:
        f[j] = max(f[j], f[j-v[i]] + w[i], f[j-2v[i]] + 2w[i] ,..., f[j-kv[i]] + kw[i])

        */

        int[] f = new int[V+1];

        for(int i = 1; i <= N; i++){  // 第 i 个物品
            for(int j = V; j >= 0; j--) {  // 从后往前
                for (int k = 0; k <= s[i]; k++)
                    if (j >= k*v[i])
                        f[j] = Math.max(f[j], f[j-k*v[i]] + k*w[i]);
            }
        }

        System.out.println(f[V]);

    }

    // 6. 多重背包问题的二进制优化解法
    private static void binaryOptOfMultiple() {
        int N = 0;
        int V = 0;
        int[] w = new int[0];
        int[] v = new int[0];
        int[] s = new int[0];                     // 一个长度为N的数组,第i个元素表示第i个物品的数量;

        try (
                Scanner reader = new Scanner(System.in) // 读入数据的代码(基于正则表达式的文本扫描器)
        ) {
            N = reader.nextInt(); // 物品的数量为N
            V = reader.nextInt(); // 背包的容量为V
            w = new int[N+1] ;
            v = new int[N+1] ;
            s = new int[N+1] ;

            for (int i = 1 ; i <= N ; i++){
                // 接下来有 N 行,每行有三个整数:v[i],w[i],s[i],用空格隔开,分别表示第i件物品的体积、价值和数量
                v[i] = reader.nextInt();
                w[i] = reader.nextInt();
                s[i] = reader.nextInt();
            }
        } catch (Exception e) {
            e.printStackTrace();
        }

        // 正式工作的代码
        /*
        思路:将多重背包问题拆分为 01背包问题,但不是一个一个拆分,但又能够达到同样的组合效果
        二进制拆分:例如 7 = 2^0 + 2^1 + 2^2, 其中1,2,4可以组合成1-7中的任何数字,这跟一个一个拆分的效果是一样的;
        如果拆分的不恰好是2^n-1,例10 = 2^0 + 2^1 + 2^2 + 3,其中1,2,4,3 恰好可以组合成1-10中的任何数字,而且不会越界
         */

        ArrayList<Integer> nw = new ArrayList<>();
        ArrayList<Integer> nv = new ArrayList<>();
        nw.add(0,0); // 首位不存值
        nv.add(0,0);

        // 拆分并添加到数组
        for (int i = 1; i <= N; i++) {
            for (int k = 1; k <= s[i]; k *= 2) {
                s[i] -= k; // k 拆分的份数
                nw.add(k * w[i]); // 添加重量
                nv.add(k * v[i]); // 添加体积
            }
            if (s[i] > 0) {
                nw.add(s[i] * w[i]); // 添加重量
                nv.add(s[i] * v[i]); // 添加体积
            }
        }

        // 01 背包的解法
        int[] f = new int[V+1];

        for(int i = 1; i < nw.size(); i++){   // 第 i 个物品
            for(int j = V; j >= nv.get(i); j--) {    // 从后往前
                f[j] = Math.max(f[j], f[j-nv.get(i)] + nw.get(i));
            }
        }

        System.out.println(f[V]);

    }

    public static void main(String[] args){
//        simpleSolutionOf01();
//        spaceOptSolutionOf01();

//        simpleSolutionOfComplete();
//        spaceOptOfComplete();

//        spaceOptOfMultiple();
        binaryOptOfMultiple();
    }
}

/*
Input:
20 200
24 50
42 60
20 49
7 15
48 115
4 11
3 8
7 5
52 66
50 25
5 8
9 25
14 40
9 22
55 42
40 30
35 49
33 16
12 12
65 127

Output:
454 -- 01
571 -- complete


Input:
4 5
1 2 3
2 4 1
3 4 3
4 5 2

Output
10 -- multiple
 */
石子合并问题

import java.util.Scanner;

/**
 * 设有N堆石子排成一排,其编号为1,2,3,…,N。
 *
 * 每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。
 *
 * 每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
 *
 * 例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;
 *
 * 如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22。
 *
 * 问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
 *
 * 输入格式
 * 第一行一个数N表示石子的堆数N。
 *
 * 第二行N个数,表示每堆石子的质量(均不超过1000)。
 *
 * 输出格式
 * 输出一个整数,表示最小代价
 *
 * Input:
 *   4
 *   1 3 5 2
 *
 * Output:
 *   22
 */
public class StonesCombined {
    public static void main(String[] args) {
        // 读入
        int N = 0;
        int[] sumN = new int[0];
        try (
                Scanner reader = new Scanner(System.in);
        ) {
            N = reader.nextInt();
            sumN = new int[N+1]; // 前 n 项和
            // 这里直接处理成前 n 项之和
            for (int i = 1; i <= N; i++) {
                sumN[i] = sumN[i-1] + reader.nextInt();
            }
        } catch(Exception e) {
            e.printStackTrace();
        }

        // 正式工作的代码
        /*
        状态集为 f(i,j) 含义:所有将区间 [i,j] 合并成一个堆的方案的集合;
        状态集为 f(i,j) 属性:值代表这些方案集合中最小的代价;

        状态转移方程:将区间 [i,j] 分成相邻两部分共有 j-i 种分法,
        分别对应 [i,i]&[i+1,j], [i,i+1]&[i+2,j], [i,i+2]&[i+3,j], ... ,[i,k]&[k+1,j], ... ,[i,j-1]&[j,j];
        其中每个子区间 [i,k]、[k+1,j] 合并成一个堆的方案的集合为 f(i,k) 、f(k+1,j);
        所以f(i,j) = k from i to j-1_min{f(i,k) + f(k+1,j)} + (w[i]+w[i+1]+...+w[j]);
        即:f(i,j) = k from i to j-1_min{f(i,k) + f(k+1,j)} + (sumN[j] - sumN[i-1]);
        */

        int[][] f = new int[N+1][N+1];
        for (int len = 2; len <= N; len++) {        // 枚举区间长度,长度为 1 时不用合并,代价为 0 忽略,从 2 开始
            for (int i = 1; i + len -1 <= N; i++) { // 枚举区间左端点,(i+len-1)为右端点
                int j = i + len -1; // 右端点
                f[i][j] = Integer.MAX_VALUE;   // 不要忘了先给个很大的值,如果是求最大值就给个很小的值,当然默认为 0
                for (int k = i; k < j; k++) {  // 更新 f[i][j]
                    f[i][j] = Math.min(f[i][j], f[i][k] + f[k+1][j] + sumN[j]-sumN[i-1]);
                }
            }
        }

        System.out.println(f[1][N]); // 根据状态集定义,左端点为 1,右端点为 N时的最小值,即全局最小值
    }
}
最长公共子序列
import java.util.Scanner;

/**
 * 给定两个长度分别为N和M的字符串A和B,求既是A的子序列又是B的子序列的字符串长度最长是多少。
 * 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
 * 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
 *
 * 若这两个字符串没有公共子序列,则返回 0。
 *
 * 输入格式
 * 第一行包含两个整数N和M。
 *
 * 第二行包含一个长度为N的字符串,表示字符串A。
 *
 * 第三行包含一个长度为M的字符串,表示字符串B。
 *
 * 字符串均由小写字母构成。
 *
 * 输出格式
 * 输出一个整数,表示最大长度。
 *
 * Input:
 *   4 5
 *   acbd
 *   abedc
 *
 * Output:
 *   3
 * 解释:a bd, ab d
 */
public class LongestCommonSubsequence {
    public static void main(String[] args) {
        // 读入
        int N = 0;
        int M = 0;
        char[] A = new char[0];
        char[] B = new char[0];
        try (
                Scanner reader = new Scanner(System.in);
        ) {
            N = reader.nextInt();
            M = reader.nextInt();
            A = new char[N+1];
            B = new char[M+1];

            String a = reader.next();
            String b = reader.next();
            for (int i = 1; i <= N; i++)
                A[i] = a.charAt(i-1);
            for (int i = 1; i <= M; i++)
                B[i] = b.charAt(i-1);
        } catch(Exception e) {
            e.printStackTrace();
        }

        // 正式工作代码
        /*
        状态表示:
            对于一个长度为 N 的序列,一共有 2^N 个子序列(每个 在 or 不在);
            定义状态集合 f(i,j) 含义:所有在字符串区间 A[1~i] 与 A[1-j] 的公共子序列的集合;
            定义状态集合 f(i,j) 属性:其中最长的子序列的长度;

        状态计算:
            f(i,j) 可分为四种(可重复,不可遗漏):
                00 不含A[i]且不含B[j] = f(i-1,j-1);
                01 不含A[i]且含B[j]  = f(i-1,j);   (存在重复,但不影响最大值)
                10 含A[i]且不含B[j]  = f(i,j-1);   (存在重复,但不影响最大值)
                11 含A[i]且含B[j],此时A[i]一定等于B[j] = f(i-1,j-1)+1;
            所以 f(i,j) = max{ f(i-1,j-1), f(i-1,j), f(i,j-1), if A[j]==B[j] --> f(i-1,j-1)+1 }
         */
        int[][] f = new int[N+1][M+1];

        for (int i = 1; i <= N; i++)
            for (int j = 1; j <=M; j++) {
                f[i][j] = Math.max(f[i-1][j], f[i][j-1]);
                if (A[i] == B[j])
                    f[i][j] = Math.max(f[i][j], f[i-1][j-1]+1);
            }

        System.out.println(f[N][M]); // 根据状态集合定义
    }
}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值