【声学基础】——质点的强迫振动

本文探讨了质点的强迫振动,包括强迫振动方程、一般规律和稳态振动。解析表明,稳态振动是等幅简谐运动,其振幅由输入力的幅值、频率及系统阻抗决定。共振时,位移振幅最大,与外力频率和固有频率的关系非线性。此外,速度和加速度振幅也有相应的共振峰值,与力学品质因素Qm密切相关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

强迫振动方程

质点的强迫振动方程是在自由振动方程的基础上在方程右边加一个外界力的激励 F a c o s ( ω t ) F_acos(\omega t) Facos(ωt),为了采用复函数求解,方程右边写成复数的形式:
∂ 2 ξ ∂ t 2 + 2 δ ∂ ξ ∂ t + ω 2 ξ = H e j ω t \frac{\partial^2\xi}{\partial t^2} +2\delta \frac{\partial \xi}{\partial t}+\omega^2\xi=He^{j\omega t} t22ξ+2δtξ+ω2ξ=Het

强迫振动的一般规律

上述方程的解是齐次方程的通解+非齐次方程的特解,其次方程的解对应瞬态的自由衰减振动,为 ξ 0 e − δ t c o s ( ω 0 ′ t − ϕ 0 ) \xi_0e^{-\delta t}cos(\omega^{'}_0t-\phi_0) ξ0eδtcos(ω0tϕ0), 非齐次的解对应受迫振动的稳态解,解的形式为: ξ F e j w t \xi_Fe^{jwt} ξFejwt,求得方程的特解为: ξ F = F a ω ∣ Z m ∣ e − j ( θ 0 + π / 2 ) \xi_F=\dfrac{F_a}{\omega|Z_m|}e^{-j(\theta _0+\pi/2)} ξF=ωZmFaej(θ0+π/2)
因为实际外力没有复数中的sin部分,所以还原为cos的形式,受迫振动的解可以表示为: ξ = ξ 0 e − δ t c o s ( ω 0 ′ t − ϕ 0 ) + ξ a c o s ( ω t − θ ) \xi= \xi_0e^{-\delta t}cos(\omega^{'}_0t-\phi_0)+\xi_acos(\omega t-\theta) ξ=ξ0eδtcos(ω0tϕ0)+ξacos(ωtθ)
其中 ξ a = F a ω ∣ Z m ∣ , θ = θ 0 + π / 2 \xi_a=\dfrac{F_a}{\omega|Z_m|},\theta=\theta _0+\pi/2 ξa=ωZmFa,θ=θ0+π/2.其中 Z m = R m + j X m Z_m=R_m+jX_m Zm=Rm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值