- 博客(30)
- 收藏
- 关注
原创 Python学习 | 怎么理解epoch?
确一起跑时的姿势和起跑线是一样的。Epoch:决定你要在训练场上跑几圈。跑太少(Epoch少)没练到位;跑太多(Epoch多)会累傻(死记硬背)。调参大师的工作之一,就是找到那个**“刚刚好”**的 Epoch 数量。
2025-11-19 19:15:31
998
原创 Python学习 | torch.manual_seed(42)
这就纯粹是程序员的“梗”了。在科幻名著《银河系漫游指南》中,42被称为“生命、宇宙以及一切终极问题的答案”。在技术上,你填 1、100、12345 或者是 42,效果是完全一样的。只要数字固定,结果就固定。大家用 42 只是为了致敬这部小说,或者显得比较“极客”。PyTorch 和 NumPy 是两套独立的代码库,它们的底层随机数生成器(RNG)是物理隔离的。PyTorch 管不了 NumPy 的事,NumPy 也管不了 PyTorch 的事。为了保证整个训练流程。
2025-11-19 19:02:15
1117
原创 CellCharter | 详细教程02 CosMx数据集
Nanostring CosMx 空间转录组数据的空间聚类本教程展示了一个使用 CellCharter 对何等人(2022 年)的非小细胞肺癌(NSCLC)CosMx 数据集的一个子集进行空间聚类的示例。这是一个单细胞空间转录组数据集,由来自 5 名不同患者的 8 个样本组成,总共包含超过 80 万个细胞,检测了约 960 个基因。我们将使用来自患者 9 的两个非相邻切片的样本。我们将使用 scVI 进行降维,并使用 CellCharter 来共同计算所有样本的空间聚类。
2025-08-27 16:45:22
1178
原创 CellCharter | 详细教程01 CODEX数据
详细教程是这个链接的大致翻译,加上个人的一些经验与思考。CODEX 空间蛋白质组学数据的空间聚类本教程展示了一个使用 CellCharter 对来自的小鼠脾脏 CODEX 数据集进行空间聚类的示例。该数据集包含 3 个健康样本(BALBc-1 至 BALBc-3)和 6 个系统性红斑狼疮小鼠样本(MRL-4 至 MRL-9),共检测了超过 70 万个细胞,涉及约 30 种蛋白质标志物。我们将使用 trVAE 进行降维,并使用 CellCharter 来计算所有样本的空间聚类。
2025-08-27 16:13:00
809
原创 LIANA | part1 intro部分
数据格式优先级:h5ad > h5 > 10x文件夹 > txt(不推荐)物种兼容性:必须转换为人类基因ID文件命名一致性:所有文件中的细胞类型名称必须保持一致数据预处理:用户需自行完成基因过滤和细胞注释由于我并没有跑过很多流程,所以我对这些file的理解不是很到位。但这些似乎并不是所谓LRP的先验知识。于是我进入了文章原文在这里找到了v5版本的Database里面的数据是这个样子的(这里是一个Ensembl文件。
2025-08-24 21:57:07
985
原创 空转学习 | cell-level 与 spot-level的区别
对比之下,其他如 seqFISH、STARmap PLUS 等则被称为“cell-level”或接近单细胞分辨率的数据。这进一步说明了“spot-level”与“cell-level”是两类不同分辨率的数据来源。2.数据集描述部分(Methods 段:Data exclusions 与 Experiments)问题来源于读NicheCompass时,对cell-level 与 spot-level概念的迷惑。此处直接给出了两种输入粒度:单细胞(cell-level)与捕获点(spot-level)。
2025-08-23 16:45:29
997
原创 DS 0 | 数据结构学习:前言
本书每章介绍一个数据结构,首先介绍该数据结构所处理的逻辑结构及其常用操作,其次介绍该数据结构的各种实现方法,以及如何将其封装成类,接着介绍C++中对应于该数据结构的工具,告诉读者如何应用现有的工具,最后介绍该data structure的application。我学习的书本《数据结构:思想与实现》当中的算法,都有完整的C++程序实现。它们既是学习Data Structure的很好示例,也是巩固C++知识的很好范例。在学习数据结构时,通常来讲,学生遇到的难点不在于对数据结构的理解,而在于如何写程序。
2025-08-22 23:22:39
285
原创 分析Cell-cell communication的关键
配体-受体资源的多样性: 不同方法使用不同的L-R数据库,这直接影响CCC预测的结果:数据库影响的基准测试结果: 研究表明,L-R数据库的选择对方法性能有显著影响。例如,同一方法在不同数据库上的F1分数可能相差0.2-0.4,这说明数据库质量比算法创新更重要scNiche是通过single-cell spatial omics data来识别和特征标记niche的一个计算框架spatial omics data一般对应原始空间转录组数据View1: molecular profiles of cells
2025-08-06 09:27:17
977
原创 04 数据操作 + 数据预处理【动手学深度学习v2】| 学习笔记
请注意,每次重新启动机器都要重新进入环境,比如这里需要重新进入我自己定义的d2l环境,然后进入python(我这里的python版本是3.11.13),然后进一步import torch。
2025-08-04 09:00:04
468
原创 Paper1:STCase | 论文学习
细胞间通讯(CCC)是生物系统协调运行的基本生物学过程。大量证据表明,即使是同类型或同聚群的细胞,也会在不同微环境中呈现迥异的相互作用模式;然而,主流 CCC 推断方法普遍停留于细胞类型或聚群水平,忽略了微环境的异质性。在此,我们提出基于空间转录组学的细胞间通讯与亚型探索工具——STCase,可在单细胞 / 微点水平表征空间转录组数据中的 CCC 事件。STCase 引入可解释的多视角图神经网络,配合面向 CCC 的自注意力机制,为每种细胞类型界定微环境并揭示微环境特异的 CCC 事件。
2025-08-01 17:55:17
883
原创 03 安装【动手学深度学习v2】| 学习笔记
这个课最大的特点是会讲代码。李沐老师讲,只是在听课那当然是很快乐的,但是需要往上走,需要实操跑代码,后面会有课程竞赛需要认真去做,再进一步可以去和其他人讲你的见解。
2025-07-30 17:54:04
1183
原创 02 深度学习介绍【动手学深度学习v2】| 学习笔记
1.模型的可解释性一直是机器学习和深度学习非常关心的,因为大家都知道这是一个黑盒模型,你训练了一个模型,你不知道它为什么工作或者为什么不工作,对于深度学习来讲这一块做的是不好的,对于机器学习来讲,我们对简单的模型有一些理解,但是变得很深的时候我们是放弃这一块的。上图表示,从10年到17年,图片分类错误率显著下降的一个发展情况图,2012年有一个比较大的下降,是因为这是深度学习的开始,接下来5年,深度学习的发展已经将图片分类的误差降到非常非常低的一个水平了。这里是Tesla的无人驾驶技术。
2025-07-30 16:08:35
394
原创 01 课程安排【动手学深度学习v2】 | 学习笔记
How是指怎么做深度学习,比如给到我一个数据我怎么实现一个模型,怎么调参得到我想要的东西,要的精度也好,要的速度也好,最终导向是要得到一个产品或者一篇paper。关于高性能计算:因为深度学习是一个比较大力出奇迹的方向(计算量大,需要很多机器来跑),所以我们会介绍怎么并行、怎么多GPU计算,以及分布式。最后就是这个Why,这是一件很难的事情,当我们想要尝试解释为什么这个东西很好/很不好的时候,我们的确是有数学的解释的,但其实很多时候看。卷积是一个空间的神经网络,那么来到循环神经网络则是一个时间的神经网络。
2025-07-30 14:49:30
428
原创 00 预告【动手学深度学习v2】| 学习笔记
动手学深度学习》 — 动手学深度学习 2.0.0 documentationd2l-ai/d2l-zh: 《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。这是一本教科书,每一张都是一个jupyter记事本,里面包含所有模型的完整实现。中文版之后,在2019年推出了英文版,英文版增加了50%的新内容。值得一提的是,在此过程中,作者们目睹了transformer的出现,transformer在NLP、CV等领域有非常广泛的应用。
2025-07-30 14:29:52
273
原创 scRNA-seq数据分析中“变异度”的概念
是质控的关键环节,通过筛选具有生物学意义的高变基因,帮助研究者聚焦于真正驱动细胞异质性的信号,而非技术或随机噪声。这一步对后续分析(如细胞聚类、轨迹推断)的准确性至关重要。质量控制(QC)是指通过一系列标准筛选数据,去除低质量或不相关的信息,以提高分析可靠性。,但其核心目的与之前的过滤操作(如。,是质控流程的重要组成部分。属于单细胞数据分析中的。
2025-05-15 17:16:12
479
原创 DataFrame的理解
具体就是我以为'A'、'B'是行名,因为在视觉上,[1,2,3]、[4,5,6]这两个一维矩阵确实是行形式呈现的。但是实际上'A'、'B'是列名[1,2,3]、[4,5,6]这两个矩阵是按列排列的。当我们编写这个字典时,视觉上是按行排列的:键 'A' 对应的值 [1, 2, 3] 看起来像是一行数据。但在 pandas 中,这实际上表示的是列 'A' 的所有值。这种差异反映了数据组织的两种视角:按列组织(适合数据处理)和按行组织(适合人类理解),pandas 允许两种方式创建相同的结果。
2025-05-15 17:14:37
262
原创 CellChat part4,5,6 cell-cell通信网络系统分析 保存CellChat对象 通过交互式CellChat浏览器探索细胞-细胞通信
CellChat通过从图论、模式识别和流形学习中抽象出来的方法对网络进行定量测量。它可以使用来确定给定信号网络中的主要信号源和目标以及中介和影响者。它可以利用预测特定细胞类型的关键输入和输出信号以及不同细胞类型之间的协调反应。它可以通过定义进行多种学习来分组信号通路。它可以通过多个来描述保守的和上下文特定的信号通路。
2025-04-01 00:43:58
1177
原创 CellChat part3 可视化细胞间通信网络
函数:这是CellChat包中专门用于生成气泡图来可视化细胞间通讯的函数。气泡图可以直观地展示不同细胞群体之间通过配体 - 受体对进行通讯的强度和显著性。:指定源细胞组。这里的数字4表示选择第 4 个细胞群体作为信号发送的源细胞组。在CellChat分析中,细胞群体通常会被编号,这个编号对应着特定的细胞类型或者细胞聚类。:指定目标细胞组。c(5:11)表示选择从第 5 个到第 11 个细胞群体作为信号接收的目标细胞组。这意味着代码将展示从第 4 个细胞群体到第 5 至 11 个细胞群体之间的细胞间通讯。
2025-03-28 15:43:41
2927
原创 CellChat part2 推断细胞间通讯网络
CellChat是先识别出高表达的配体受体,并识别这些高表达的配体-受体相互作用,并为每个相互作用分配一个概率值,并且采用并行计算的方法,去推断具有生物学意义的细胞间通讯网络。从生物学角度来看,比如患病的组织相比于没有患病的组织,一定有一部分细胞当中的某些配体和受体,一定是有更高表达了的(或者更低表达了的),于是我们要采用统计学方法去计算各个配体和受体之间相互作用的概率,然后用可视化去展现出来。
2025-03-28 10:26:49
2267
原创 CellChat part1 CellChat对象的数据输入处理和初始化
我们可以从一个 data matrix、Seurat、SingleCellExperiment、AnnData 对象创建一个新的 CellChat 对象,如果输入是 Seurat 或 SingleCellExperiment 对象,则默认使用对象中的 metadata,用户必须提供。对于第一种基因表达数据,我们已经很熟悉了,就是一个矩阵,矩阵的行是genes,矩阵的列是cells。使用cellchat进行分析时,有两种数据输入类型:一种是细胞的基因表达数据,另一种是用户分配的细胞标签。
2025-03-28 09:32:01
1803
原创 单细胞数据类型和数据对象格式
这些数据对象提供了标准化的数据结构,便于各种单细胞分析工具的开发和使用。不同平台之间也有转换方法,例如可以将Seurat对象转换为SingleCellExperiment对象或AnnData对象,反之亦然。
2025-03-27 10:11:44
833
原创 CellChat part0 安装库
的某些功能调用 Python 库),可以取消注释,使 R 使用 Anaconda 里的 Python 版本。这样可以避免数据在某些操作中被误转换成因子类型,减少数据类型相关的错误。指定 Python 解释器,便于 R 和 Python 交互。主要用于推断和可视化不同细胞类型之间的配体-受体相互作用。,防止字符串自动转换为因子,提高数据处理的灵活性。,用于 R 和 Python 交互(通过。方便组合多个 ggplot2 图表。设置 R 的全局选项,使。这段 R 代码主要是为。
2025-03-25 12:52:43
543
原创 ggplot2包 | R语言可视化绘图必备工具
ggplot(准确来说是 ggplot2)是基于 R 语言的数据可视化包,基于图层语法(Grammar of Graphics)设计,能帮助用户将数据以直观易懂的图形展示出来。
2025-03-25 12:43:07
712
原创 patchwork包 | 跑CellChat时include的一个R包
在数据分析和可视化中,经常需要把多个图表放在一起进行对比,而。需要在同一张图中比较不同数据集或不同变量的关系。论文或报告中需要将多个图表拼接在一起。嵌入其他非 ggplot2 元素。需要调整图表布局,但不想手动调整。可为组合图添加标题和说明。让这件事变得非常简单。
2025-03-25 12:40:48
351
原创 CellChat一个报错
问题出在这里:——————分割线——————plan("multisession", workers = 4) # 或者设置您想要的核心数#单数据集信令网络的流形学习。
2025-03-21 11:13:37
969
原创 Excel绝对引用符号$
首先要知道的是单元格由“字母+数字”进行表达,字母表示的是列数,数字表示的是行数(这个和矩阵元素下标的逻辑是相反的)$用于对单元格进行绝对引用。,说明列是被绝对引用的。,说明行是被绝对引用的。
2025-01-19 16:50:02
946
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
1