自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 scRNA-seq数据分析中“变异度”的概念

是质控的关键环节,通过筛选具有生物学意义的高变基因,帮助研究者聚焦于真正驱动细胞异质性的信号,而非技术或随机噪声。这一步对后续分析(如细胞聚类、轨迹推断)的准确性至关重要。质量控制(QC)是指通过一系列标准筛选数据,去除低质量或不相关的信息,以提高分析可靠性。,但其核心目的与之前的过滤操作(如。,是质控流程的重要组成部分。属于单细胞数据分析中的。

2025-05-15 17:16:12 369

原创 DataFrame的理解

具体就是我以为'A'、'B'是行名,因为在视觉上,[1,2,3]、[4,5,6]这两个一维矩阵确实是行形式呈现的。但是实际上'A'、'B'是列名[1,2,3]、[4,5,6]这两个矩阵是按列排列的。当我们编写这个字典时,视觉上是按行排列的:键 'A' 对应的值 [1, 2, 3] 看起来像是一行数据。但在 pandas 中,这实际上表示的是列 'A' 的所有值。这种差异反映了数据组织的两种视角:按列组织(适合数据处理)和按行组织(适合人类理解),pandas 允许两种方式创建相同的结果。

2025-05-15 17:14:37 189

原创 Numpy、Pandas包学习

表示数组的维度数(轴的数量)

2025-05-15 16:46:35 823

原创 CellChat part4,5,6 cell-cell通信网络系统分析 保存CellChat对象 通过交互式CellChat浏览器探索细胞-细胞通信

CellChat通过从图论、模式识别和流形学习中抽象出来的方法对网络进行定量测量。它可以使用来确定给定信号网络中的主要信号源和目标以及中介和影响者。它可以利用预测特定细胞类型的关键输入和输出信号以及不同细胞类型之间的协调反应。它可以通过定义进行多种学习来分组信号通路。它可以通过多个来描述保守的和上下文特定的信号通路。

2025-04-01 00:43:58 743

原创 CellChat part3 可视化细胞间通信网络

函数:这是CellChat包中专门用于生成气泡图来可视化细胞间通讯的函数。气泡图可以直观地展示不同细胞群体之间通过配体 - 受体对进行通讯的强度和显著性。:指定源细胞组。这里的数字4表示选择第 4 个细胞群体作为信号发送的源细胞组。在CellChat分析中,细胞群体通常会被编号,这个编号对应着特定的细胞类型或者细胞聚类。:指定目标细胞组。c(5:11)表示选择从第 5 个到第 11 个细胞群体作为信号接收的目标细胞组。这意味着代码将展示从第 4 个细胞群体到第 5 至 11 个细胞群体之间的细胞间通讯。

2025-03-28 15:43:41 1651

原创 CellChat part2 推断细胞间通讯网络

CellChat是先识别出高表达的配体受体,并识别这些高表达的配体-受体相互作用,并为每个相互作用分配一个概率值,并且采用并行计算的方法,去推断具有生物学意义的细胞间通讯网络。从生物学角度来看,比如患病的组织相比于没有患病的组织,一定有一部分细胞当中的某些配体和受体,一定是有更高表达了的(或者更低表达了的),于是我们要采用统计学方法去计算各个配体和受体之间相互作用的概率,然后用可视化去展现出来。

2025-03-28 10:26:49 1338

原创 CellChat part1 CellChat对象的数据输入处理和初始化

我们可以从一个 data matrix、Seurat、SingleCellExperiment、AnnData 对象创建一个新的 CellChat 对象,如果输入是 Seurat 或 SingleCellExperiment 对象,则默认使用对象中的 metadata,用户必须提供。对于第一种基因表达数据,我们已经很熟悉了,就是一个矩阵,矩阵的行是genes,矩阵的列是cells。使用cellchat进行分析时,有两种数据输入类型:一种是细胞的基因表达数据,另一种是用户分配的细胞标签。

2025-03-28 09:32:01 1427

原创 单细胞数据类型和数据对象格式

这些数据对象提供了标准化的数据结构,便于各种单细胞分析工具的开发和使用。不同平台之间也有转换方法,例如可以将Seurat对象转换为SingleCellExperiment对象或AnnData对象,反之亦然。

2025-03-27 10:11:44 481

原创 CellChat part0 安装库

的某些功能调用 Python 库),可以取消注释,使 R 使用 Anaconda 里的 Python 版本。这样可以避免数据在某些操作中被误转换成因子类型,减少数据类型相关的错误。指定 Python 解释器,便于 R 和 Python 交互。主要用于推断和可视化不同细胞类型之间的配体-受体相互作用。,防止字符串自动转换为因子,提高数据处理的灵活性。,用于 R 和 Python 交互(通过。方便组合多个 ggplot2 图表。设置 R 的全局选项,使。这段 R 代码主要是为。

2025-03-25 12:52:43 289

原创 ggplot2包 | R语言可视化绘图必备工具

ggplot(准确来说是 ggplot2)是基于 R 语言的数据可视化包,基于图层语法(Grammar of Graphics)设计,能帮助用户将数据以直观易懂的图形展示出来。

2025-03-25 12:43:07 494

原创 patchwork包 | 跑CellChat时include的一个R包

在数据分析和可视化中,经常需要把多个图表放在一起进行对比,而。需要在同一张图中比较不同数据集或不同变量的关系。论文或报告中需要将多个图表拼接在一起。嵌入其他非 ggplot2 元素。需要调整图表布局,但不想手动调整。可为组合图添加标题和说明。让这件事变得非常简单。

2025-03-25 12:40:48 234

原创 CellChat一个报错

问题出在这里:——————分割线——————plan("multisession", workers = 4) # 或者设置您想要的核心数#单数据集信令网络的流形学习。

2025-03-21 11:13:37 656

原创 Excel绝对引用符号$

首先要知道的是单元格由“字母+数字”进行表达,字母表示的是列数,数字表示的是行数(这个和矩阵元素下标的逻辑是相反的)$用于对单元格进行绝对引用。,说明列是被绝对引用的。,说明行是被绝对引用的。

2025-01-19 16:50:02 371

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除