机器学习在水质分析与非法闯入检测中的应用
一、机器学习助力水质分析
在当今社会,准确分析水质以及了解水质对海洋生物的影响至关重要。通过机器学习的方法,我们可以更高效、准确地完成这些任务。
1. 水质评估的混淆矩阵
在水质评估中,混淆矩阵是一个重要的工具。它的对角元素代表正确分类的元组总数。以一个具体的例子来说,计算水质分类的准确率公式为:
[
Accuracy = \frac{Total\ number\ of\ Correctly\ Classified\ Tuples}{Total\ Number\ of\ Tuples}
]
假设总元组数量为 597,正确分类的元组数量为 44 + 409 + 85 + 12 = 550,则准确率为:
[
Accuracy = \frac{550}{597} \approx 0.92127
]
准确率得分 = 准确率 * 100 = 92.127%
这表明,给定任何一组属性(特征值),机器学习模型能够以约 92.12% 的准确率将水质准确预测和分类为优秀、良好、较差、非常差或不适合等类别。从混淆矩阵中可以看出,测试数据集中只有极少数元组被错误分类,这充分证明了该模型在水质分析方面的有效性。
2. 水质对海洋生物健康影响的评估
同样,在评估水质对海洋生物健康的影响时,也可以使用混淆矩阵。通过计算得出,对于给定的一组特征值,水质被分类为对海洋生物健康理想、可接受或有害的准确率高达 95.97%。具体计算如下:
[
Accuracy = \frac{26 + 534 + 13}{2
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



