A - Politics
题目分析
首先简要翻译一下题目
 题目大意是在一个俱乐部中,有n位成员(包括一位主席),有k个议题待解决。每位议员都可以发表一次对于某个议题的支持与反对观点,若反对人数大于支持人数,则所有支持的成员全部离开;反之所有反对的人全部离开;当反对人数与支持人数相等时,所有人都离开。你作为主席可以提前知道所有人的观点,你可以开除出了自己在内的任何一位成员,以保证表决完k个议题时剩下的人数最多。
 首先对于每一个议题如果分类讨论则有如下几种情况:
- 主席支持,并且支持者占多数,此时不需要开除任何人,因为开除起不到效果
 - 主席反对,并且反对者占多数,同上
 - 主席支持,但反对者占多数,此时需要开除所有反对者(也可以开除部分反对者,使得其人数少于支持者,但最终效果一样,故直接开除所有反对者)
 - 主席反对,但支持者占多数,此时需要开除所有反对者(也可以开除部分支持者,使得其人数少于反对者,但最终效果一样,故直接开除所有支持者)
 - 两派人数相等,直接开除与主席意见相悖的所有人
 
其实综上来看,每一种情况下,不管是任何一种情况,当前与主席意见不一致的人都被开除,因此只要某人在任何一个议题上与主席的观点不一致,就会被开除,故剩下的人数最大值只能是自始至终都与主席观点一致的成员,我们只需要统计这些成员的人数即可。
 需要注意的是,第一行数据是主席的观点。
完整代码
#include <iostream>
 
using namespace std;
int main()
{
   
   
    int t;
    cin >> t;
    while(t --)
    {
   
   
        int n, k;
        cin >> n >> k;
        string s[n]; //使用字符串数组统计每一位成员的观点
        int ans = n;
        for(int i = 0 ; i < n ; i ++)
        {
   
   
            cin >> s[i];
            if(s[i] != s[0]) ans --; //直接比较字符串,如与主席不相同,则直接开除
        }
            cout << ans << endl; //输出剩下的人数
    }
    return 0;
}
 
B - Indivisible
题目分析
翻译一下
 意思是给出一个正整数n,考虑1 ~ n的所有排列 a 1 , a 2 , … , a l , a l + 1 , … , a r , a r + 1 , … , a n a_1, a_2, \dots, a_l, a_{l + 1}, \dots, a_r, a_{r + 1}, \dots, a_n a1,a2,…,al,a

                  
                  
                  
                  
本文详细解析了Codeforces Round #869 分数2组的A - Politics和B - Indivisible两道题目。对于A题,分析了所有可能的情况并提供了保证剩下人数最多的策略。B题则讨论了正整数排列问题,证明了特定序列满足题目要求。同时,文章附带了两题的完整C++代码实现。
          
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					454
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            