median-of-two-sorted-arrays

http://leetcode.com/2011/03/median-of-two-sorted-arrays.html#comment-1053

Sophia's code has error, only can pass 1500 tests.  briankwong's good, and based on MIT solution.

http://www2.myoops.org/course_material/mit/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-046JFall-2005/30C68118-E436-4FE3-8C79-6BAFBB07D935/0/ps9sol.pdf

public class Solution {




    public double findMedianSortedArrays(int A[], int B[]) {
        // Start typing your Java solution below
        // DO NOT write main() function
        int alength = A.length;
        int blength = B.length;
        
        if (alength == 0 ) {
            if (blength % 2 == 1) {
                return B[blength/2];
            }
            else {
                return ( B[blength/2 - 1] + B[blength/2] ) / 2.0; 
            }
        }
        else if (blength == 0 ) {
            if (alength % 2 == 1) {
                return A[alength/2];
            }
            else {
                return ( A[alength/2 - 1] + A[alength/2] ) / 2.0; 
            }
        }
        
        int left  = Math.max(0, (alength + blength)/2 - blength);
        int right = Math.min(alength-1, (alength + blength)/2);
        
        return findMedian(A, B, left, right, alength, blength);
        
    }
    
    public double findMedian(int A[], int B[], int l, int r, int nA, int nB) {
        if (l>r) {
            int left  = Math.max(0, (nA + nB)/2 - nA);
            int right = Math.min(nB-1, (nA + nB)/2);
            return findMedian(B, A, left, right, nB, nA);
        }


        
        int i = (l+r)/2;
        int j = (nA+nB)/2-i-1;
        
        System.out.println("j:" + j);
        boolean lvalid = (j < 0) || (A[i] >= B[j]);
        boolean rvalid = (j >= nB - 1) || (A[i] <= B[j + 1]);
        
        if ( lvalid && !rvalid ) return findMedian(A, B, l, i-1, nA, nB);
        else if (!lvalid && rvalid) return findMedian(A, B, i+1, r, nA, nB);
        else {
            if ( (nA+nB)%2 == 1 ) return A[i];
            else if (i>0) {
            if (j<0) {
            return (A[i]+A[i-1])/2.0;
            }
            else {
            return (A[i]+Math.max(B[j], A[i-1]))/2.0;
            }
           
            }
            else return (A[i]+B[j])/2.0;
        }
    }


   
    public static void main(String[] args) {
        int i = 25;
        System.out.println("i:" + i);
        System.out.println("Math.round(i/2):" + Math.round(i/2));
        
        Solution s = new Solution();
        int[] A = new int[]{5};
        int[] B = new int[]{1,2,3,4,6,7};
        double c = s.findMedianSortedArrays(A, B);
        System.out.println(c);
        
    }




    public double findMedianSortedArrays2(int A[], int B[]) {
        int m = A.length, n = B.length;
        if(m == 0) return simpleMedian(B);
        if(n == 0) return simpleMedian(A);
        return medianSearch(A, B, Math.max(0, (m + n)/2 - n), Math.min(m - 1, (m + n)/2));
    }
    
    private double medianSearch(int A[], int B[], int left, int right){
        int m = A.length, n = B.length;
        if(left > right) return medianSearch(B, A, Math.max(0, (m + n)/2 - m), Math.min(n - 1, (m + n)/2));
        int i = (left + right) / 2;
        int j = (m + n) / 2 - i - 1;
        boolean lvalid = (j < 0) || (A[i] >= B[j]);
        boolean rvalid = (j >= n - 1) || (A[i] <= B[j + 1]);
        
        if(lvalid && !rvalid){ 
        return medianSearch(A, B, left, i - 1);
        }else if(!lvalid && rvalid){
        return medianSearch(A, B, i + 1, right);
        }
        
        // median is found
        if((m + n) % 2 == 1) return A[i];
        if(i > 0) {
        int pre = (j < 0) ? A[i - 1] : Math.max(A[i - 1], B[j]);
        return (A[i] + pre) / 2.0;
        }
        return (A[i] + B[j]) / 2.0;
    }
    
    private double simpleMedian(int A[]){
        int n = A.length;
        if(n % 2 == 1) return A[n/2];
        return (A[n/2 - 1] + A[n/2]) / 2.0;
    }




}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值