【GDOI2017模拟7.17】两棵树

题目

这里写图片描述
树的节点数n<=200

暴力

好的没错我就是要讲暴力。
我们设f[i][j]表示将第一棵树的以i节点为根的子树与第二棵树的以j节点为根的子树匹配的最小代价,那么我们可以暴力的看i的哪个儿子跟j的哪个儿子匹配,取个最小值。

优化

其实是不用暴力的看i的哪个儿子跟j的哪个儿子匹配的,这其实是个很裸的二分图带权匹配,对于空的匹配,直接新建点就好了,然后可以用KM(呸根本不会嗯找天要补补,好吧我打了费用流,还是spfa,不是zkw)

贴个代码(本人比赛时比较煞笔新建了太多点。。。。)

#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>

#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)

using namespace std;

typedef long long LL;
typedef double db;

int get(){
    char ch;
    int s=0;
    bool pd=0;
    while(ch=getchar(),(ch<'0'||ch>'9')&&ch!='-');
    if (ch=='-')pd=1;
    else s=ch-'0';
    while(ch=getchar(),ch>='0'&&ch<='9')s=s*10+ch-'0';
    if (pd)return -s;
    return s;
}

const int N = 210;

int l1[N],r1[N],l2[N],r2[N];
int n,m;
int f[N][N];
int ka,kb,s1[N],s2[N],w1[N],w2[N];
int st,ed,h[N*4],dis[N*4],tot,q[N*4],last[N*4],fl[N*4],d1[N],d2[N];
bool pd[N*4];
struct edge{
    int x,f,v,next;
}e[N*N*8+N*8];

void gs1(int x){
    s1[x]=1;
    for(int a=l1[x];a;a=r1[a]){
        d1[a]=d1[x]+1;
        gs1(a);
        s1[x]+=s1[a];
    }
}

void gs2(int x){
    s2[x]=1;
    for(int a=l2[x];a;a=r2[a]){
        d2[a]=d2[x]+1;
        gs2(a);
        s2[x]+=s2[a];
    }
}

void addedge(int x,int y,int f,int v){
    e[++tot].x=y;
    e[tot].f=f;
    e[tot].v=v;
    e[tot].next=h[x];
    h[x]=tot;
}

void inse(int x,int y,int v){
    addedge(x,y,1,v);
    addedge(y,x,0,-v);
}

bool spfa(){
    fo(i,st,ed){
        dis[i]=last[i]=fl[i]=-1;
        pd[i]=0;
    }
    dis[st]=0;
    pd[st]=1;
    int head=0,tail=1;
    q[1]=st;
    int len=ed+1;
    while(head!=tail){
        int x=q[head=head%len+1];
        pd[x]=0;
        for(int p=h[x];p>-1;p=e[p].next)
            if (e[p].f&&(dis[e[p].x]==-1||dis[x]+e[p].v<dis[e[p].x])){
                dis[e[p].x]=dis[x]+e[p].v;
                last[e[p].x]=x;
                fl[e[p].x]=p;
                if (!pd[e[p].x])pd[q[tail=tail%len+1]=e[p].x]=1;
            }
    }
    return dis[ed]>-1;
}

int aug(){
    int v=1e+9;
    int x=ed;
    while(x>-1){
        if (x>0)v=min(v,e[fl[x]].f);
        x=last[x];
    }
    x=ed;
    while(x>-1){
        if (x>0){
            e[fl[x]].f-=v;
            e[fl[x]^1].f+=v;
        }
        x=last[x];
    }
    return v*dis[ed];
}

void dfs(int x,int y){
    for(int a=l1[x];a;a=r1[a])
        for(int b=l2[y];b;b=r2[b])
            dfs(a,b);
    ka=kb=0;
    for(int a=l1[x];a;a=r1[a])w1[++ka]=a;
    for(int b=l2[y];b;b=r2[b])w2[++kb]=b;
    tot=-1;
    st=0;ed=ka*2+kb*2+1;
    fo(i,st,ed)h[i]=-1;
    fo(i,1,ka)fo(j,1,kb)inse(i,ka+kb+j,f[w1[i]][w2[j]]);
    fo(i,ka+1,ka+kb)fo(j,1,kb)inse(i,ka+kb+j,s2[w2[j]]);
    fo(i,1,ka)fo(j,kb+1,ka+kb)inse(i,ka+kb+j,s1[w1[i]]);
    fo(i,ka+1,ka+kb)fo(j,kb+1,ka+kb)inse(i,ka+kb+j,0);
    fo(i,1,ka+kb)inse(st,i,0);
    fo(i,ka+kb+1,ka*2+kb*2)inse(i,ed,0);
    f[x][y]=0;
    while(spfa())f[x][y]+=aug();
}

int main(){
    n=get();
    fo(i,1,n){
        int x=get();
        r1[i]=l1[x];
        l1[x]=i;
    }
    m=get();
    fo(i,1,m){
        int x=get();
        r2[i]=l2[x];
        l2[x]=i;
    }
    gs1(0);
    gs2(0);
    dfs(0,0);
    printf("%d\n",f[0][0]);
    return 0;
}

其实好久没有打费用流了,这次打对了看来都记牢了呀。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值