题目
树的节点数n<=200
暴力
好的没错我就是要讲暴力。
我们设f[i][j]表示将第一棵树的以i节点为根的子树与第二棵树的以j节点为根的子树匹配的最小代价,那么我们可以暴力的看i的哪个儿子跟j的哪个儿子匹配,取个最小值。
优化
其实是不用暴力的看i的哪个儿子跟j的哪个儿子匹配的,这其实是个很裸的二分图带权匹配,对于空的匹配,直接新建点就好了,然后可以用KM(呸根本不会嗯找天要补补,好吧我打了费用流,还是spfa,不是zkw)
贴个代码(本人比赛时比较煞笔新建了太多点。。。。)
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
typedef long long LL;
typedef double db;
int get(){
char ch;
int s=0;
bool pd=0;
while(ch=getchar(),(ch<'0'||ch>'9')&&ch!='-');
if (ch=='-')pd=1;
else s=ch-'0';
while(ch=getchar(),ch>='0'&&ch<='9')s=s*10+ch-'0';
if (pd)return -s;
return s;
}
const int N = 210;
int l1[N],r1[N],l2[N],r2[N];
int n,m;
int f[N][N];
int ka,kb,s1[N],s2[N],w1[N],w2[N];
int st,ed,h[N*4],dis[N*4],tot,q[N*4],last[N*4],fl[N*4],d1[N],d2[N];
bool pd[N*4];
struct edge{
int x,f,v,next;
}e[N*N*8+N*8];
void gs1(int x){
s1[x]=1;
for(int a=l1[x];a;a=r1[a]){
d1[a]=d1[x]+1;
gs1(a);
s1[x]+=s1[a];
}
}
void gs2(int x){
s2[x]=1;
for(int a=l2[x];a;a=r2[a]){
d2[a]=d2[x]+1;
gs2(a);
s2[x]+=s2[a];
}
}
void addedge(int x,int y,int f,int v){
e[++tot].x=y;
e[tot].f=f;
e[tot].v=v;
e[tot].next=h[x];
h[x]=tot;
}
void inse(int x,int y,int v){
addedge(x,y,1,v);
addedge(y,x,0,-v);
}
bool spfa(){
fo(i,st,ed){
dis[i]=last[i]=fl[i]=-1;
pd[i]=0;
}
dis[st]=0;
pd[st]=1;
int head=0,tail=1;
q[1]=st;
int len=ed+1;
while(head!=tail){
int x=q[head=head%len+1];
pd[x]=0;
for(int p=h[x];p>-1;p=e[p].next)
if (e[p].f&&(dis[e[p].x]==-1||dis[x]+e[p].v<dis[e[p].x])){
dis[e[p].x]=dis[x]+e[p].v;
last[e[p].x]=x;
fl[e[p].x]=p;
if (!pd[e[p].x])pd[q[tail=tail%len+1]=e[p].x]=1;
}
}
return dis[ed]>-1;
}
int aug(){
int v=1e+9;
int x=ed;
while(x>-1){
if (x>0)v=min(v,e[fl[x]].f);
x=last[x];
}
x=ed;
while(x>-1){
if (x>0){
e[fl[x]].f-=v;
e[fl[x]^1].f+=v;
}
x=last[x];
}
return v*dis[ed];
}
void dfs(int x,int y){
for(int a=l1[x];a;a=r1[a])
for(int b=l2[y];b;b=r2[b])
dfs(a,b);
ka=kb=0;
for(int a=l1[x];a;a=r1[a])w1[++ka]=a;
for(int b=l2[y];b;b=r2[b])w2[++kb]=b;
tot=-1;
st=0;ed=ka*2+kb*2+1;
fo(i,st,ed)h[i]=-1;
fo(i,1,ka)fo(j,1,kb)inse(i,ka+kb+j,f[w1[i]][w2[j]]);
fo(i,ka+1,ka+kb)fo(j,1,kb)inse(i,ka+kb+j,s2[w2[j]]);
fo(i,1,ka)fo(j,kb+1,ka+kb)inse(i,ka+kb+j,s1[w1[i]]);
fo(i,ka+1,ka+kb)fo(j,kb+1,ka+kb)inse(i,ka+kb+j,0);
fo(i,1,ka+kb)inse(st,i,0);
fo(i,ka+kb+1,ka*2+kb*2)inse(i,ed,0);
f[x][y]=0;
while(spfa())f[x][y]+=aug();
}
int main(){
n=get();
fo(i,1,n){
int x=get();
r1[i]=l1[x];
l1[x]=i;
}
m=get();
fo(i,1,m){
int x=get();
r2[i]=l2[x];
l2[x]=i;
}
gs1(0);
gs2(0);
dfs(0,0);
printf("%d\n",f[0][0]);
return 0;
}
其实好久没有打费用流了,这次打对了看来都记牢了呀。。。