2019 ICPC徐州网络赛I题(区间整除对数 && 树状数组)

题意:

给一个1-n的排列的序列,m次询问,每次询问区间L—R之间 内有多少个整除数对。

思路:

首先需要解决统计整除数对的问题,如果1-n是有序的序列,那么很好统计,每次将i加上i一直加到n,每次加到的数即是i的倍数,这个经典的方法即可以得到每个数与这个数成对的整除数对。对于这个题目,n个数是1-n的一个排列,所以需要稍微修改一下这个方法,将整除数对应的下标位置存起来。对于这个题目需要每个数他前面与他产生整除数对的数存到这个数对应的vector中。完成了整除数对的存储,我们需要将查询的部分离线操作,按照右端点排序(将右端点当作下标,vector第二维存对应最短点),之后就要用到树状数组查询了,遍历1-n所有端点,边将当前点与前面1-i中产生整除数对加入到树状数组长,边对当前作为右端点的查询进行查询,即getsum(i) - getsum(l-1);

#include<bits/stdc++.h>
#define pair(a,b) make_pair(a,b)
using namespace std;
const int maxn=1e5+10;
int sum[maxn],pos[maxn];
vector<pair<int,int>>query[maxn];
vector<int>q[maxn];
int n,m;
int lowbit(int x){
    return x&(-x);
}
void add(int i,int x){
    while(i<=n){
        sum[i]+=x;
        i+=lowbit(i);
    }
}
int getsum(int i){
    int ans=0;
    while(i){
        ans+=sum[i];
        i-=lowbit(i);
    }
    return ans;
}
int ans[maxn];
int main(){
    cin>>n>>m;
    int x;
    for(int i=1;i<=n;i++){
        cin>>x;pos[x]=i;
    }
    for(int i=1;i<=n;i++){//统计整除数对
        for(int j=i;j<=n;j+=i){
            int x=pos[i],y=pos[j];
            if(x<y)swap(x,y);
            q[x].push_back(y);
        }
    }
    for(int i=1;i<=m;i++){
        int l,r;cin>>l>>r;
        query[r].push_back(pair(i,l));
        ans[i]-=r-l+1;
    }
    for(int i=1;i<=n;i++){
        for(int j=0;j<q[i].size();j++)add(q[i][j],1);
        for(int j=0;j<query[i].size();j++)ans[query[i][j].first]+=getsum(i)-getsum(query[i][j].second-1);
    }
    for(int i=1;i<=m;i++){
        cout<<ans[i]<<endl;
    }
}

 

相关推荐
©️2020 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页