SM9学习笔记与图解——第4章 密钥封装和加解密

本文介绍了一种密钥封装与加解密的方法,包括密钥的封装与解封过程,以及加密与解密的具体步骤。文章详细阐述了密钥封装原理,并通过实例说明了如何使用该技术实现信息安全传输。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A.4 第4部分——密钥封装和加解密

A.4.1 密钥封装(User A)

K是用户A的生成密钥,C是封装信息,用于对方解封得到相同的密钥K。

A.4.2 密钥解封(User B)

A.4.3 密钥封装原理

从以上推导可知,双方计算出来的w相等,C是一样的,所以KDF计算值相等

A.4.4 加密(User A)

 

流加密

分组加密

klen

k1长度+k2长度

k1长度+k2长度

k1长度

M长度

对称密码算法的密钥长度

k2长度

未定义,测试向量中为256

未定义,测试向量中为256

C2

C2=K1M

C2=Enc(K1, M)

 

 

A.4.5 解密(User B)

 

流加密

分组加密

klen

k1长度+k2长度

k1长度+k2长度

k1长度

C2长度

对称密码算法的密钥长度

k2长度

未定义,测试向量中为256

未定义,测试向量中为256

C2

M =K1C2

M=Enc(K1, C2)

 

 

A.4.6 加解密原理

同密钥封装原理

 

### SM4 加密解密流程 SM4 是一种分组密码算法,其加密解密过程遵循特定的结构化流程。虽然具体的图形表示未直接提供,可以基于已知的信息描述该流程。 #### 加密阶段 1. **初始设置** - 使用固定的轮常量表初始化。 - 密钥扩展生成子密钥序列用于各轮变换[^1]。 2. **数据预处理** - 明文被分割成固定长度的数据块(通常为128位),如果最后一块不足,则需填充至满长。 3. **迭代变换** - 对每一个明文块执行多轮非线性转换操作,每一轮都涉及到S盒替换、移位以及异或运算等基本操作,并结合当前轮次对应的子密钥进行混合计算。 4. **最终输出** - 经过预定数量的轮次后得到密文块并按顺序组合形成完整的密文串。 #### 解密阶段 为了能够成功恢复原始消息,整个逆向工程必须严格匹配上述正向过程中的参数配置: - 同样的密钥调度机制来重新构建相同的子密钥集; - 反转所有应用于加扰步骤的操作顺序——即先做最后一步的反函数再逐步向前推进直至完全还原输入状态; - 特别的,在此过程中依然依赖于同一套定义好的数学模型完成必要的映射关系调整工作以确保唯一性准确性。 对于更直观的理解,建议查阅专业的安全技术文档或者官方标准说明获取详细的图表资料。此外,也可以参考开源项目实现了解具体编码细节。 ```python def sm4_encrypt(plaintext, key): """模拟SM4加密过程""" # 初始化环境变量... def round_function(state, subkey): # 实现单轮变换逻辑... state = prepare_data(plaintext) keyschedule = expand_key(key) for i in range(number_of_rounds): state = round_function(state, keyschedule[i]) ciphertext = finalize_output(state) return ciphertext def sm4_decrypt(ciphertext, key): """模拟SM4解密过程""" # 类似于sm4_encrypt但反转了某些内部调用... ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值