平方和算法是模指数运算的基本。如果指数e的二进制展开为,则利用平方和算法可以这样计算模指数:
。 …………(4.1)
现在给出平方和算法的简单描述。关于平方和算法的更多情况可参见[10,算法14.79]。
───────────────────────────────────────

───────────────────────────────────────
举个简单的例子e=165。比如取,那么按照平方和算法思想计算模指数的过程为:
Step1:初始化A: A ← 1;
Step2:迭代过程如下:
表4.1
|
i |
Step 2.1) |
Step 2.2) | |
|
7 |
A←A×A=1 |
ei=1 |
A←A×g=g |
|
6 |
A←A×A=g2 |
ei=0 |
— |
|
5 |
A←A×A=g4 |
ei=1 |
A←A×g=g5 |
|
4 |
A←A×A=g10 |
ei=0 |
— |
|
3 |
A←A×A=g20 |
ei=0 |
— |
|
2 |
A←A×A=g40 |
ei=1 |
A←A×g=g41 |
|
1 |
A←A×A=g82 |
ei=0 |
— |
|
0 |
A←A×A=g164 |
ei=1 |
A←A×g=g165 |

本文详细介绍了模指数运算的基础——平方和算法,通过一个具体实例解释了如何使用该算法进行模指数计算。该算法在信息安全、密码学等领域有着广泛应用。
12万+

被折叠的 条评论
为什么被折叠?



