SparkCore基础知识总结

SparkCore基础知识

1 Spark运行环境

1) Local模式

​ 不需要其他任何节点资源就可以在本地执行Spark代码的环境,一般用于教学、调试、演示。

2) StandAlone模式

​ StandAlone模式即独立部署模式,体现了经典的master-slave模式。在集群中选择一个节点作为Master,另外其他节点都可以作为Worker节点。

3) Yarn模式

​ StandAlone模式由Spark自身提供计算资源,无需其他框架提供资源。这种方式降低了和其他第三方资源框架的耦合性,独立性很强。但Spark主要是一个计算框架,而不是资源调度框架,在实际的生产环境中,它在Yarn环境下运行的情况更为常见。

Spark常用端口号:

  • Spark查看当前Spark-shell运行任务情况端口号:4040(计算)
  • Spark Master内部通信服务端口号:7077
  • Standalone模式下,Spark Master Web端口号:8080(资源)
  • Spark历史服务器端口号:18080
  • Hadoop Yarn任务运行情况查看端口号:8088

2 Spark运行架构

2.1 运行架构

Spark框架的核心是一个计算引擎,整体来说它采用了标准的master-slave结构
在这里插入图片描述

2.2 核心组件

1)Driver

​ Spark的驱动器节点,用于执行Spark任务中的main方法,负责实际代码执行工作。

​ Driver在Spark作业执行时主要负责:

  • 将用户程序转换为job
  • 在Executor之间调度task
  • 跟踪Exectutor的执行情况
  • 通过UI展示查询运行情况

2) Executor

​ Spark Executor是集群中工作节点(Work)中的一个JVM进程,负责在Spark作业中运行具体Task,任务之间彼此独立。Spark应用启动时,Executor节点被同时启动,并且伴随着整个Spark应用的生命周期而存在。如果由Executor节点发生了故障或崩溃,Spark应用也可以继续执行,会将出错节点上的任务调度到其他Executor节点上继续运行。

​ Executor的核心功能:

  • 负责运行Spark应用的任务,并将结果返回给Driver
  • 通过自身的Block Manager为用户程序中要求缓存的RDD提供内存式存储。RDD是直接缓存在Executor进程内的,因此任务可以在运行时充分利用缓存数据加速。

3)Master&Worker

​ Spark集群的独立部署环境中,不需要依赖其他的资源调度框架,自身就实现了资源调度的功能,所以环境中还有两个其他的核心组件:Master和Worker,这里的Master是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责,类似于Yarn环境中的RM;Worker也是一个进程,运行在集群中的一台服务器上,由Master分配资源对数据进行并行的计算和处理,类似于Yarn环境中的NM。

4)Application Master

​ Hadoop用户向YARN集群提交应用程序时,提交程序中应该包含ApplicationMaster,用于向资源调度器申请执行任务的资源容器Container,运行用户自己的程序任务job,监控整个任务的执行,跟踪整个任务的状态,处理任务失败等异常情况。

​ 简而言之,RM和Driver之间的解耦合靠的是ApplicationMaster。

2.3 核心概念

1)Executor和Core

​ Spark Executor是集群中运行在工作节点(Worker)中的一个JVM进程,是整个集群中专门用于计算的节点。在提交应用中,可以提供参数指定计算节点的个数,以及对应的资源。这里的资源一般指的是工作节点Executor的内存大小和虚拟CPU(Core)数量。

2)并行度(Parallelism)

​ 在分布式计算框架中一般都是多个任务同时执行,由于任务分布在不同的计算节点进行计算,所以能够真正地实现多任务并行执行。将整个集群并行执行任务的数量称之为并行度

3)有向无环图(DAG)

​ 大数据计算引擎框架根据使用方式不同分为四类,其中第一类就是Hadoop所承载的MapReduce,它将计算分为Map和Reduce两个阶段,对于上层应用来说要实现这两个阶段,就需要实现多个job的串联。这样的弊端催生了支持DAG框架的产生。支持DAG的框架被划分为第二代计算引擎。Spark是第三代计算引擎,主要特点是Job内部的DAG支持(不跨越job),以及实时计算。

在这里插入图片描述

DAG是由Spark程序直接映射成的数据流的高级抽象模型。简单理解就是将整个程序计算的执行过程用图形表示出来,更易于理解。

2.4 提交流程

​ 提交流程指的是开发人员根据需求写的应用程序通过Spark客户端提交给Spark运行环境执行计算的流程。以下是基于Yarn环境的提交流程:

在这里插入图片描述

​ Spark应用程序提交到Yarn环境中执行的时候,一般会有两种部署执行的方式:Client和Cluster。两种模式的区别主要在于:Driver程序运行节点位置

1)Yarn Client模式

​ Client模式将用于监控和调度的Driver模块在客户端执行,而不是在Yarn中,一般用于测试:

  • Driver在任务提交的本地机器上运行
  • Driver启动后会和RM通讯申请启动Application Master
  • RM分配container,在合适的NM上启动Application Master,负责向RM申请Executor内存
  • RM接到ApplicationMaster的资源后会分配container,然后ApplicationMaster在资源分配指定的NM上启动Executor进程
  • Executor进程启动后会向Driver反向注册,Executor全部注册完Driver开始执行main函数
  • 之后执行到Action算子时,触发一个job,并根据宽依赖开始划分stage,每个stage生成对应的TaskSet,之后将task分发到各个Executor上执行。

2)Yarn Cluster模式

​ Cluster模式将用于监控和调度的Driver模块启动在Yarn集群资源中执行。一般应用于实际生产环境。

  • 在Yarn Cluster模式下,任务提交后会和RM通讯申请启动ApplicationMaster
  • 随后RM分配container,在合适的NM上启动Application Master,此时的Application就是Driver
  • Driver启动后向RM申请Executor内存,RM接到ApplicationMaster的资源后会分配container,然后在合适的NodeManager上启动Executor进程;
  • Executor进程启动后会向Driver反向注册,Executor全部注册完成后Driver开始执行main函数
  • 之后执行到Action算子时,触发一个job,并根据宽依赖开始划分stage,每个stage生成对应的TaskSet,之后将task分发到各个Executor上执行。

3 Spark核心编程

Spark计算框架中有三大数据结构:RDD,累加器,广播变量

3.1 RDD

​ RDD叫做弹性分布数据集,是Spark中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面元素可并行计算的集合。

  • **弹性:**存储的弹性:内存与磁盘的自动切换

    ​ 容错的弹性:数据丢失可恢复

    ​ 计算的弹性:计算出错重试机制

    ​ 分片的弹性:可根据需要重新分片

  • 分布式:数据存储在大数据集群不同节点上

  • 数据集:RDD封装了计算逻辑,并不保存数据

  • 数据抽象:RDD是一个抽象类,需要子类具体实现

  • 不可变:RDD封装了计算逻辑,是不可以改变的,想要改变只能产生新的RDD,在新的RDD里面封装计算逻辑。

RDD核心属性:

1)分区列表:RDD数据结构中存在分区列表,用于执行任务时并行计算,是实现分布式计算的重要属性。

protected def getPartitions: Array[Parititon]

2) 分区计算函数:Spark在计算时,使用分区函数对每一个分区进行计算。

def compute(split:Partition, context:TaskContext):Iterator[T]

3)RDD之间依赖关系:RDD是计算模型的封装,当需求中需要将多个计算模型进行组合时,就需要将多个RDD建立依赖关系。

4)分区器:当数据为KV类型数据时,可以通过设定分区器自定义数据的分区。

5)首选位置:计算数据时,可以根据计算节点的状态选择不同的节点位置进行计算。

3.2 RDD的创建和分区操作

​ RDD使用分区来分布式并行处理数据,并且要做到尽量少的在不同的Executor之间使用网络交换数据。所以当使用RDD读取数据的时候,会尽量的在物理上靠近数据源。比如说在读取HDFS中数据的时候,会尽量地保持RDD的分区和数据源的分区数、分区模式等一一对应。

​ Spark中RDD有四种创建模式:

​ 1)从集合(内存)中创建RDD:

sparkContext.parallelize(List(1,2,3,4),minPartition = x)
sparkContext.makeRDD(List(1,2,3,4))
// minPartition可以用来设定分区数量

​ 2)从外部存储(文件)创建RDD

​ 由外部存储系统的数据集创建RDD,包括:本地文件系统,Hadoop支持的数据集,如Hbase、HDFS等。

sparkContext.textFile(Path)

​ 3)从其他RDD创建

​ 通过一个RDD运算完以后,将数据模型保存为新的RDD

​ 4)直接创建RDD

​ 使用new的方式直接构造RDD

3.3 RDD工作原理

​ 在Yarn环境中,RDD的工作原理如下:

​ 1)启动Yarn集群环境

在这里插入图片描述

​ 2)Spark通过申请资源创建调度节点和计算节点

在这里插入图片描述

​ 3)Spark框架根据需求将计算逻辑根据分区划分成不同的任务
在这里插入图片描述

​ 4)调度节点将任务根据计算节点状态发送到对应的计算节点进行计算
在这里插入图片描述

从上述流程可以看出RDD在整个流程中主要用于将逻辑封装,并生成Task发送给Executor节点执行计算。

3.4 RDD转换算子

RDD根据数据处理方式的不同将算子整体上分为Value类型、双Value类型和Key-Value类型

value类型

1) map

函数说明:将处理的数据逐条进行映射转换。这里的转换可以是类型的转换也可以是值得转换。要求数据经过map后不会增多或者减少。

def map[U:ClassTag](f:T=>U):RDD[U]
//函数签名


val dataRDD: RDD[Int] = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD1: RDD[Int] = dataRDD.map(num =>	{
    num*2
})
val dataRDD2: RDD[String] = dataRDD1.map(
    num => {
    ""+ num
})

2) mapPartitions

函数说明:将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理可以是任意的处理哪怕是过滤数据。

def mapPartitions[U:classTag](
	f:Iterator[T] => Iterator[U],
	preservesPartitioning:Boolean = false) : RDD[U]
	)
//函数签名

val dataRDD1: RDD[Int] = dataRDD.mapPartitions(
	datas => {
        datas.filter(_==2)
    })

Map算子是以分区内一个数据为单位依次执行,类似于串行操作;mapPartitions算子是以分区为单位进行批处理操作。

3)mapPartitionWithIndex

函数说明:将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理可以是任意的处理哪怕是过滤数据,在处理的同时可以获取当前分区索引。

def mapPartitionsWithIndex[U:ClassTag](
	f:(Int,Iterator[T]) => Iterator[U]),
	preservesPartitioning:Boolean = false):RDD[U]
//函数签名

val dataRDD1 = dataRDD.mapPartitionWithIndex(
	(index,data) => {
        data.map(index,_)
    }
)

4)flatMap

函数说明:将处理后的数据进行扁平化后再进行映射处理(继续拆分),所以算子也称扁平映射。

def flatMap[U:ClassTag](f:T=>TraversableOnce[U]):RDD[U]
//函数签名

val dataRDD = sparkContext.makeRDD(List(
	List(1,2),List(3,4),1))
val dataRDD1 = dataRDD.flatMap(
	list => list
)

5)glom

函数说明:将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变。

def glom():RDD[Array[T]]
//函数签名

val dataRDD = sparkContext.makeRDD(List(1,2,3,4)
                                   ,1)
val dataRDD1:RDD[Array[Int]] = dataRDD.glom()

6)groupBy

函数说明:将数据根据指定的规则进行分组,分区默认不变,但是数据会被打乱重新组合,我们将这样的操作成为shuffle。极限情况下数据可能被分在同一个分区中。

def groupBy[K](f:T => K)(implicit kt:ClassTag[K]): RDD[(K,Iterable[T])]
//函数签名

val dataRDD = sparkContext.makeRDD(List(1,2,3,4),1)
val dataRDD1 = dataRDD.groupBy(
    _%2
)

7)filter

函数说明:将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡。在生产环境下,可能会出现数据倾斜。

def filter(f: T=> Boolean): RDD[T]
//函数签名

val dataRDD = sparkContext.makeRDD(List(
1,2,3,4)
,1)
val dataRDD1 = dataRDD.filter(_%2 == 0)

8)sample

函数说明:根据指定的规则从数据集中抽取数据

val dataRDD = sparkContext.makeRDD(List(1,2,3,4),1)

val dataRDD1 = dataRDD.sample(false,0.5) //1、不放回 2、抽取几率	3、随机数种子
val dataRDD2 = dataRDD.sample(true,2)//1、放回 	2、	重复数据纪律	3、随机数种子

9)distinct

函数说明:将数据集中重复的数据去重

def distinct()(implicit ord:Ordering[T] = null):RDD[T]
def distinct(numPartitions:Int)(implicit ord:Ordering[T] = null) :RDD[T]


val dataRDD = sparkContext.makeRDD(List(
	1,2,3,4,1,2
),1)
val dataRDD1 = dataRDD.distinct()

val dataRDD2 = dataRDD.distinct(2)

10)coalesce

函数说明:根据数据量缩减分区,用于大数据过滤后,提高小数据的执行效率。

def coalesce(numPartitions:Int,shuffle:Boolean = false,
			partitionCoalescer:Option[PartitionCoalescer] = Option.empty)
			(implicit ord: Ordering[T] = null)
			:RDD[T]

11)repartition

函数说明:该操作内部其实执行的是coalesce操作,参数shuffle的默认值为true。无论是将分区多的RDD转换为分区数少的RDD转换为分区数多的RDD,repartition操作都可以完成,因为无论如何都会经过shuffle过程。

12)sortBy

函数说明:该操作用于排序数据。再排序之前可以将数据通过f函数进行处理,之后按照f函数处理的结果进行排序,默认为升序排序。排列后新产生的RDD的分区数与原RDD的分区数一致,中间存在shuffle过程。

def sortBy[K](
	f:(T) => K,
	ascending Boolean=true,
	numPartitions:Int = this.partitions.length)
	(implicit ord:Ordering[K],ctag:ClassTag[K]):RDD[T]
//函数签名

val dataRDD = sparkContext.makeRDD(List(
	1,2,3,4,1,2
),2)

val dataRDD1 = dataRDD.sortBy(num=>num,false,4)

双value类型

13) intersection

函数说明:对源RDD和参数RDD求交集后返回一个新的RDD

def intersection(other:RDD[T]):RDD[T]
//函数签名

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.intersection(dataRDD2)

14)union

函数说明:对源RDD和参数RDD求并集后返回一个新的RDD

def union(other:RDD[T]):RDD[T]
//函数签名

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.union(dataRDD2)

15)subtract

函数说明:以一个RDD元素为主,去除两个RDD中重复元素,将其他元素保留下来,求差集。

def subtract(other:RDD[T]):RDD[T]
//函数签名

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.subtract(dataRDD2)

16)zip

函数说明:将RDD中的元素以键值对的形式进行合并。其中,键值对中的Key为第1个RDD中的元素,Value为第2个RDD中的相同位置的元素。

def zip[U:ClassTag](ohter:RDD[U]):RDD[(T,U)]
//函数签名

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.zip(dataRDD2)

key-value类型

17)partitionBy

函数说明:将数据按照指定Partitioner重新进行分区。Spark默认的分区器是HashPartioner

def partitionBy([partition:Partitioner]):RDD[(K,V)]
//函数签名

val rdd:RDD[(Int,String)] = 
	sc.makeRDD(Array((1,"aaa"),(2,"bbb"),(3,"ccc")),3)
import org.apache.spark.HashPartitioner
val rdd2: RDD[(Int,String)] = rdd.partitionBy(new HashPartitioner(2))

18)reduceByKey

def reduceByKey(func:(V,V)=>V):RDD[(K,V)]
def reduceByKey(func:(V,V)=>V, numPartitions:Int):RDD[(K,V)]
//函数签名

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.reduceByKey(_+_)
val dataRDD3 = dataRDD1.reduceByKey(_+_, 2)

19)groupByKey

函数说明:将数据源的数据根据key对value进行分组

def groupByKey():RDD[(K,Iterable[V])]
def groupByKey(numPartitions:Int):RDD[(K,Iterable[V])]
def groupByKey(partition:Partition):RDD[(K,Iterable[V])]
//函数签名


val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.groupByKey()
val dataRDD3 = dataRDD1.groupByKey(2)
val dataRDD4 = dataRDD1.groupByKey(new HashPartitioner(2))

reduceByKey和groupByKey的区别?

reduceByKey和groupByKey都存在shuffle操作,但是reduceByKey可以在shuffle前对分区进行欲聚合功能,这样可以减少落盘的数据量;groupByKey只进行分组,不会让数据量减少。

20)aggregateByKey

函数说明:将数据根据不同的规则进行分区内计算和分区间计算

def aggregateByKey[U:ClassTag](zeroValue:U)(seqOp:(U,V)=>U,combOp:(U,U)=>U):RDD[(K,U)]
//
        // aggregateByKey存在函数柯里化,有两个参数列表
        // 第一个参数列表,需要传递一个参数,表示为初始值
        //       主要用于当碰见第一个key的时候,和value进行分区内计算
        // 第二个参数列表需要传递2个参数
        //      第一个参数表示分区内计算规则
        //      第二个参数表示分区间计算规则

val dataRDD1 = 
	sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = 
	dataRDD1.aggregateByKey(0)(_+_,_+_)


21)foldByKey

函数说明:当分区内计算规则和分区间计算规则相同时,aggregateByKey就可以简化为foldByKey

def foldByKey(zeroValue: V)(func:(V,V)=>V):RDD[(K,V)]
//函数签名


val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.foldByKey(0)(_+_)

22) CombineByKey

函数说明:最通用的对key-value型RDD进行聚集操作的聚集函数(aggregation function)。类似于aggregate(),combineByKey()允许用户返回值与输入不一致。

def combineByKey[C](
	createCombiner:V=>C,
	mergeValue:(C,V)=>C.
	mergeCombiners:(C,C)=>C):RDD[(K,C)]
)
//函数签名

val list:List[(String,Int)] = List(("a",88),("b",95),("a",91),("b",93),("a",95),("b",98))
val input: RDD[(String,Int)] = sc.makeRDD(list,2)
val combineRDD: RDD[(String,(Int,Int))] = input.combineByKey(
	(_, 1),
    (acc:(Int,Int),v) => (acc._1+v,acc._2 + 1),
    (acc1:(Int,Int),acc2:(Int,Int)) => (acc1._1+acc2._1,acc1._2+acc2._2)
)

23)sortByKey

函数说明:在一个(K,V)的RDD上调用,K必须实现Orderd接口(特质),返回一个按照key进行排序的RDD

def sortByKey(ascending:Boolean = true,numPartitions:Int=self.partitions.length):RDD[(K,V)]
//函数签名

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val sortRDD1:RDD[(String,Int)] = dataRDD1.sortByKey(true)
val sortRDD1:RDD[(String,Int)] = dataRDD1.sortByKey(false)

24)join

函数说明:在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素连接在一起的(K,(V,W))的RDD

def join[W](other:RDD[(K,w)]):RDD[(K,(V,W))]
//函数签名

val rdd:RDD[(Int,String)] = sc.makeRDD(Array((1,"a"),(2,"b"),(3,"c")))
val rdd1:RDD[(Int,Int)] = sc.makeRDD(Array((1,4),(2,5),(3,6)))
rdd.join(rdd1).collect().foreach(println)

25)cogroup

函数说明:在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable,iterable))类型的RDD

def cogroup[W](other:RDD[K,W]):RDD[(K,(Iterable[V],Iterable[W]))]
//函数签名

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("a",2),("c",3)))
val dataRDD1 = sparkContext.makeRDD(List(("a",1),("c",2),("c",3)))

val value: RDD[(String, (Iterable[Int],Iterable[Int]))] = 
dataRDD1.cogroup

cogroup返回的是一个元组,元组的value是List的集合(Iterable),如(K,(Iterable[V],Iterable[W])),Iterable[V]中是第一个RDD中key相同的value,Iterable[W]中是第二个RDD中key相同的value。一般在开发过程中用的较少,作为中间过程存在。

3.5 RDD行动算子

1)reduce

函数说明:聚集RDD中的所有元素,先聚合分区内数据,再聚合分区间数据

def reduce(f:(T,T)=>T):T
//函数签名

val rdd:RDD[Int] = sc.makeRDD(List(1,2,3,4))

val reduceResult: Int = rdd.reduce(_+_)

2)collect

函数说明:在驱动程序中,以数组Array的形式返回数据集的所有元素

def collect():Array[T]
//函数签名

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
rdd.collect.foreach(println)

3)count

函数说明:返回RDD中元素的个数

def count():Long
//函数签名

val rdd:RDD[Int] = sc.makeRDD(List(1,2,3,4))
//返回RDD中元素的个数

val countResult: Long = rdd.count()

4)first

函数说明:返回RDD中第一个元素

def first():T
//

val rdd:RDD[Int] = sc.makeRDD(List(1,2,3,4))
val firstResult: Int = rdd.first()
println(firstResult)

5)take

函数说明:返回一个由RDD的前n个元素组成的数组

def take(num:Int) :Array[T]
//

val rdd:RDD[Int] = sc.makeRDD(List(1,2,3,4))
val takeResult: Array[Int] = rdd.take(2)
println(takeResult.mkString(","))

6)takeOrdered

函数说明:返回该RDD排序后的前n个元素组成的数组

def takeOrdered(num:Int)(implicit ord:Ordering[T]):Array[T]
//

val rdd:RDD[Int] = sc.makeRDD(List(1,3,2,4))

val result: Array[Int] = rdd.takeOrdered(2) //取2个数据排序

7)aggregate

函数说明:分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合。

def aggregate[U:ClassTag](zeroValue:U)(seqOp:(U,T)=>U),combOp:(U,U)=>U
//
val rdd:RDD[Int] = sc.makeRDD(List(1,2,3,4))
val result: Int = rdd.aggregate(0)(_+_,_+_)
val result: Int = rdd.aggregate(10)(_+_,_+_)

8)fold

函数说明:折叠操作,aggregate的简化版操作,区内和区间操作相同

def fold(zeroValue:T)(op:(T,T)=>T):T
//

val rdd:RDD[Int] = sc.makeRDD(List(1,2,3,4))
val foldResult: Int = rdd.fold(0)(_+_)

9)countByKey

函数说明:统计每种key的个数

def countByKey():Map[K,Long]
//

val rdd:RDD[(Int,String)] = sc.makeRDD(List((1,"a"),(1,"a",(2,"b"),(3,"c"),(3,"c")))
val result: collection.Map[Int,Long] = rdd.countByKey()

10)save相关算子

函数说明:将数据保存到不同格式的文件中

//保存为Text
rdd.saveAsTextFile("output")

//序列化成对象保存到文件
rdd.saveAsObjectFile("output1")

//保存成Sequencefile文件
rdd.map((_,1)).saveAsSequenceFile("output2")

11)foreach

函数说明:分布式遍历RDD中的每一个元素,调用指定函数

val rdd:RDD[Int] = sc.makeRDD(List(1,2,3,4))

//收集后打印
rdd.map(num=>num).collect().foreach(println)


//分布式打印
rdd.foreach(println)

3.6 RDD序列化

从计算角度来看,算子以外的代码都是在driver端执行,算子内的代码都是在executor端执行。在scala函数式编程中,会导致算子内需要用到算子外的数据,如果算子外的数据无法序列化,则无法传值给executor端执行。因此每次执行任务计算前,检查闭包内的对象是否可以继续序列化,这个操作称为闭包检测

因此,在spark中要对rdd对象中的数据进行读取,需要将类继续序列化来访问:

class Search(query:String) extends Serializable{
	def isMatch(s:String): Boolean = {
		s.contains(query)
	}
	//函数序列化案例
	def getMatch(rdd:RDD[String]): RDD[String] = {
		rdd.filter(isMatch)
}

}

3.7 RDD依赖关系

1)RDD血缘关系

RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Linage(血统)记录下来,以便恢复丢失的分区。

2)RDD窄依赖

窄依赖表示每一个父RDD的Partition最多被子RDD的一个Partition使用。如map、filter、union等操作。

3)RDD宽依赖

宽依赖表示同一个父RDD的Partition被多个子RDD的Partition依赖,会引起Shuffle。如groupByKey、reduceByKey、sortByKey等。

3.8 RDD任务划分

RDD任务切分中间分为:Application、Job、Stage和Task

  • Application:初始化一个SparkContext即生成一个Application
  • Job:一个Action算子就会生成一个Job
  • Stage:Stage等于宽依赖(ShuffleDependency)的个数加1;
  • Task:一个Stage的阶段中,最后一个RDD的分区个数就是Task的个数。

3.9 RDD持久化

1)RDD Cache缓存

​ RDD通过Cache或者Persist方法将前面的计算结果缓存,默认情况下会把数据以缓存在JVM的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的action算子时,该RDD将会被缓存在计算节点的内存中,并供后面重用。

2)RDD CheckPoint

​ CheckPoint实际上是将RDD中间结果写入磁盘。由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后有节点出现问题,可以从检查点开始重做血缘,减少开销。

3)Cacha和CheckPoint区别

​ 1)Cache缓存只是将数据保存起来,不切断血缘依赖

​ 2)Cache缓存的数据通常存储在磁盘、内存等地方,可靠性低。CheckPoint的数据通常存在HDFS等高容错、高可用的文件系统,可靠性高。

​ 3)建议对checkpoint()的RDD使用Cache缓存,这样checkpoint的job只需要从Cache缓存中读取数据即可,否则需要再从头计算一次RDD。

3.10 RDD分区器

​ Spark目前支持Hash分区和Range分区,和用户自定义分区。Hash为当前的默认分区。分区器决定了RDD中分区的个数,RDD中每条数据经过Shuffle后进入哪个分区,进而决定Reduce个数。

1)Hash分区:对于给定的key,计算其hashCode,并除以分区个数取余。

2)Range分区:将一定范围内的数据映射到一个分区中,尽量保证每个分区数据均匀,而且分区间有序。

4 累加器

​ 累加器用来把Executor端变量信息聚合到Driver端。在Driver端程序中定义的变量,在Executor端的每个Task都会得到这个变量的一份新的副本,每个task更新这些副本的值后,传回Driver端进行Merge操作。

longAccumulator()

5 广播变量

​ 广播变量用来高效分发比较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个Spark操作使用。比如,应用要向所有节点发送一个较大的只读查询表,用广播变量就很合适。在多个并行操作中使用同一个变量,但是Spark会为每个任务分别发送。

参考:尚硅谷Spark教程

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Spark CoreSpark的基础组件,提供了分布式任务调度、内存管理、错误恢复、存储管理等核心功能。以下是Spark Core的一些知识点概述: 1. RDD:弹性分布式数据集,是Spark中最基本的数据处理模型,可以看作是一个不可变的分布式数据集合,支持并行操作。 2. 累加器:用于在并行计算中对某个变量进行累加操作,可以在Driver端定义,但在Executor端进行累加操作。 3. 广播变量:用于在并行计算中对某个只读变量进行广播,以便在每个节点上使用相同的值,避免重复传输。 4. 分区:RDD中数据的分片,每个分区都会被一个Task处理,分区数可以手动指定。 5. 依赖关系:RDD之间的依赖关系分为窄依赖和宽依赖,窄依赖表示每个父RDD的分区最多只被一个子RDD的分区使用,宽依赖表示每个父RDD的分区可能被多个子RDD的分区使用。 6. SparkContext:Spark应用程序的入口,用于创建RDD、累加器、广播变量等。 7. 部署模式:Spark支持本地模式、Standalone模式、Yarn模式、Mesos模式等多种部署模式。 8. 数据读取:Spark支持从本地文件系统、HDFS、HBase、JDBC等多种数据源读取数据。 以下是一个例子,演示如何使用Spark Core读取本地文件并进行Word Count操作: ```python from pyspark import SparkContext # 创建SparkContext sc = SparkContext("local", "Word Count") # 读取文件并进行Word Count lines = sc.textFile("file:///path/to/file") words = lines.flatMap(lambda line: line.split(" ")) wordCounts = words.map(lambda word: (word, 1)).reduceByKey(lambda a, b: a + b) # 输出结果 for wc in wordCounts.collect(): print(wc) # 关闭SparkContext sc.stop() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值