聚类

本文详细介绍了聚类算法的不同类型,包括分级聚类(如BIRCH、CURE、CHAMELEON)、划分法(K-MEANS、K-MEDOIDS、CLARANS)、密度算法(DBSCAN、OPTICS、DENCLUE)、图论聚类法和网格算法(STING、CLIQUE、WAVE-CLUSTER),以及基于模型的方法。通过对各种算法原理的阐述,帮助理解聚类算法的工作方式。
摘要由CSDN通过智能技术生成

一、分级聚类 Hierarchical Cluster
分级聚类通过连续不断的将最为相似的群组两两合并,来构造一个群组的层次结构。其中的每个群组都是从单一元素开始,在每次迭代的过程中,都会计算两个群体之间的距离,并将距离最近的两个群组合并。并重复这一过程,直到只剩一个群组。
代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等;
二、划分法
使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;
1、 K-Means Cluster
K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。
原理如图:
这里写图片描述
公式:
这里写图片描述
1、随机选取K个质心的值

2、计算各个点到质心的距离

3、将点的类划分为离他最近的质心,形成K个cluster

4、根据分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值