二叉排序树删除操作之php实现

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sanbingyutuoniao123/article/details/82730668

        删除节点有三种情况:

               1.叶子节点    2.仅有左或右子树的节点    3.左右子树都有的节点

       

<?php
	class BinaryTree
	{
		public $data;
		public $lChild;
		public $rChild;

		public function __construct($data, $lChild = null, $rChild = null)
		{
			$this->data   = $data;
			$this->lChild = $lChild;
			$this->rChild = $rChild;
		}
	}

	$b37 = new BinaryTree(37);
	$b35 = new BinaryTree(35, null, $b37);
	$b51 = new BinaryTree(51);
	$b47 = new BinaryTree(47, $b35, $b51);
	$b58 = new BinaryTree(58, $b47);

	$b93 = new BinaryTree(93);
	$b99 = new BinaryTree(99, $b93);
	$b73 = new BinaryTree(73);
	$b88 = new BinaryTree(88, $b73, $b99);

	$binaryTree = new BinaryTree(62, $b58, $b88);

	$tmp = null;
	function searchBst($binaryTree, $key)
	{
		if (is_null($binaryTree)) {
			return false;
		} else {
			global $tmp;
			$tmp = $binaryTree;
		}
		if ($binaryTree->data == $key) {
			return true;
		} else if ($key < $binaryTree->data) {
			return searchBst($binaryTree->lChild, $key);
		} else {
			return searchBst($binaryTree->rChild, $key);
		}
	}

	// $res = searchBst($binaryTree, 99);
	// print_r($res);echo "\n";
	// print_r($tmp);echo "\n";

	//二叉排序树插入操作
	function InsertBst(&$binaryTree, $key)
	{
		global $tmp;
		if (!searchBst($binaryTree, $key)) {
			$data = new BinaryTree($key);
			$data->lChild = $data->rChild = null;

			if (!$tmp) {
				$binaryTree = $data;
			} else if ($key < $tmp->data) {
				$tmp->lChild = $data;
			} else {
				$tmp->rChild = $data;
			}

			return true;
		}

		return false;
	}

	$res = InsertBst($binaryTree, 103);
	// print_r($res);echo "\n";
	// print_r($tmp);echo "\n";
	print_r($binaryTree);echo "\n";

	//-----------------------------------------------
	function Delete(BinaryTree $biTree) {
		if ($biTree->lChild === null) {
			$biTree = $biTree->rChild;
		} else if ($biTree->rChild === null) {
			$biTree = $biTree->lChild;
		} else {
			//找到要删除的节点的最右节点
			$changeNode = $biTree;
			$deleteLeftNode = $biTree->lChild;
			while (!is_null($deleteLeftNode->rChild)) {
				$changeNode = $deleteLeftNode;
				$deleteLeftNode = $deleteLeftNode->rChild;
			}
			$biTree->data = $deleteLeftNode->data;
			if ($biTree == $changeNode) {
				$changeNode->lChild = $deleteLeftNode->lChild;
			} else {
				$changeNode->rChild = $deleteLeftNode->lChild;
			}
		}
	}

	function DeleteBst($biTree, $key) {
		if (is_null($biTree)) {
			return false;
		} 

		if ($biTree->data == $key) {
			return Delete($biTree);
		} else if ($biTree->data < $key) {
			return DeleteBst($biTree->rChild, $key);
		} else {
			return DeleteBst($biTree->lChild, $key);
		}
	}

	DeleteBst($binaryTree, 47);
	print_r($binaryTree);
	//-----------------------------------------------




	// $binaryTree = null;
	// $tree = array(62,88,58,47,35,73,51,99,37,93);
	// foreach ($tree as $key => $value) {
	// 	# code...
	// 	InsertBst($binaryTree, $value);
	// }
	// print_r($binaryTree);echo "\n";

 

阅读更多
换一批

没有更多推荐了,返回首页