P1110 [ZJOI2007]报表统计(数据结构大杂烩+splay水题)

本文详细介绍了如何使用平衡树(如Splay Tree)和可删除元素堆(如multiset)来解决数组操作问题,包括插入元素、查询相邻差值最小值和所有元素间差值最小值。代码实现中,通过维护额外的数据结构实时更新最小差值,实现了高效的操作。
摘要由CSDN通过智能技术生成

传送门

题意

先给定一个初始长度为n的初始数组,要求实现3个操作:
1.INSERT i k:在原数列的第 i 个元素后面添加一个新元素 k;如果原数列的第 i 个元素已经添加了若干元素,则添加在这些元素的最后(见样例说明)。
2.MIN_GAP:查询相邻两个元素的之间差值(绝对值)的最小值。
3.MIN_SORT_GAP:查询所有元素中最接近的两个元素的差值(绝对值)。

分析

1.第3个操作需要用到平衡树,在每次插入一个数的时候找到其前驱&后继,统计全剧最小值即为答案。
2.第2个操作,插入一个数的时候会破坏一个相邻关系,新增两个相邻关系。我们可以用一个可删除元素的堆来维护每对相邻元素的差的绝对值。
3.第1个操作,插入&读入原数列的时候,就只要维护在原数列的第 i 个元素的“尾巴”上的元素(r数组)是什么就行了。还要在平衡树中insert这个数。

这里我们拿multiset作为可删除元素的堆,splay作为平衡树(查找前驱后继)
注意:multiset中erase(val)函数会删除所有值为val的节点,如果要只删除一个,应该写成:

S.erase(S.find(val));

代码

#include <bits/stdc++.h>

using namespace std;
//-----pre_def----
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
#define fir(i, a, b) for (int i = (a); i <= (b); i++)
#define rif(i, a, b) for (int i = (a); i >= (b); i--)
#define endl '\n'
#define init_h memset(h, -1, sizeof h), idx = 0;
#define lowbit(x) x &(-x)

//---------------
const int N = 1e6 + 10;
int n, m;
int r[N], d[N];
int ans3 = INF;
multiset<int> S;
struct node
{
    int s[2], p, v; //s[0]==lson,s[1]==rson,p=pre,v=val(注意:splay中的val不作为排序依据,只在初始状态下有序)
    int size;       //size==包括自身在内的子树的节点数
    //int lz;//懒标记,可以记录翻转信息
    void init(int _v, int _p)
    {
        v = _v;
        p = _p;
        size = 1;
    }
} tr[N];
int root, idx;
void pushup(int u); //由子向父更新
//void pushdown(int u);//区间翻转时的向下更新
void rotate(int x);       //核心函数1:将所有情况的左旋右旋写在一个函数里面
void splay(int x, int k); //核心函数2:将x节点旋转至k下面,如果k是0则旋转到根
int find(int v);          //查找v的位置,并将其旋转到根节点
int insert(int v);        //插入v
void del(int v);          //删除值为v
void del(int l, int r);   //删除值为(l~r)的所有点
int find_pre(int v);      //查找v的前驱的节点编号
int find_ne(int v);       //查找v的后继的节点编号
int get(int v);           //查找值等于v的点的编号;如果不存在值为v的点,则输出大于v的最小值所在的点的编号
int find_k(int k);        //查找排名为k(中序遍历第k个)的数
void pushup(int u)
{
    tr[u].size = tr[tr[u].s[0]].size + tr[tr[u].s[1]].size + 1;
}
// void pushdown(int u)
// {
//     if (tr[u].lz)
//     {
//         if (tr[u].lz)
//         {
//             swap(tr[u].s[1], tr[u].s[0]);
//             tr[tr[u].s[0]].lz ^= 1;
//             tr[tr[u].s[1]].lz ^= 1;
//             tr[u].lz = 0;
//         }
//     }
// }
void rotate(int x) //核心函数1:将所有情况的左旋右旋写在一个函数里面
{
    int y = tr[x].p, z = tr[y].p; //在这个链上:z是祖宗,y是爸爸,x是儿子。现在要把x移动到最上边
    int k = tr[y].s[1] == x;      // k=0表示x是y的左儿子;k=1表示x是y的右儿子
    tr[z].s[tr[z].s[1] == y] = x;
    tr[x].p = z;
    tr[y].s[k] = tr[x].s[k ^ 1];
    tr[tr[x].s[k ^ 1]].p = y;
    tr[x].s[k ^ 1] = y;
    tr[y].p = x;
    pushup(y), pushup(x); //顺序不能乱
}
void splay(int x, int k) //核心函数2:将x节点旋转至k下面,如果k是0则旋转到根
{
    while (tr[x].p != k) //但x的父节点不为k时
    {
        int y = tr[x].p, z = tr[y].p;
        if (z != k) //x的祖宗还不是k
        {
            if ((tr[y].s[1] == x) ^ (tr[z].s[1] == y)) //异或,当zyx不为一条直链的时候
            {
                rotate(x);
            }
            else
            {
                rotate(y);
            }
        }
        rotate(x);
    }
    if (!k) //如果k==0,等加于将x旋转至root
        root = x;
}
int find(int v) //查找v的位置,并将其旋转到根节点(此时左子树的size就是v的排名)
{
    int u = root;
    if (!u)
        return -1;                               //树空
    while (tr[u].s[v > tr[u].v] && v != tr[u].v) //当存在儿子并且当前位置的值不等于x
        u = tr[u].s[v > tr[u].v];                //跳转到儿子,查找x的父节点
    splay(u, 0);                                 //把当前位置旋转到根节点
    return root;
}
int insert(int v) //插入一个数,并返回节点编号
{
    int u = root, p = 0;
    while (u) //找到应该要插入的位置
    {
        p = u, u = tr[u].s[v > tr[u].v];
    }

    u = ++idx;
    if (p)
        tr[p].s[v > tr[p].v] = u;
    tr[u].init(v, p);

    splay(u, 0);
    return u;
}
void del(int v) //删除值为v的点
{
    int last = find_pre(v); //查找x的前驱
    int next = find_ne(v);  //查找x的后继
    splay(last, 0);
    splay(next, last);
    //将前驱旋转到根节点,后继旋转到根节点下面
    //很明显,此时后继是前驱的右儿子,x是后继的左儿子,并且x是叶子节点
    int del = tr[next].s[0]; //后继的左儿子
    tr[next].s[0] = 0;       //这个节点直接丢掉(不存在了)
}
void del(int l, int r) //删除值为(l~r)的所有点
{
    int last = get(l); //查找x的前驱
    int next = get(r); //查找x的后继
    splay(next, 0);
    splay(last, next);
    tr[last].s[1] = 0; //这个节点直接丢掉(不存在了)
    pushup(last), pushup(next);
}
int find_pre(int v) //查找v的前驱的节点编号
{
    find(v);
    int u = root; //根节点,此时x的父节点(存在的话)就是根节点
    if (tr[u].v < v)
        return u;   //如果当前节点的值小于x并且要查找的是前驱
    u = tr[u].s[0]; //查找后继的话在右儿子上找,前驱在左儿子上找
    while (tr[u].s[1])
        u = tr[u].s[1]; //要反着跳转,否则会越来越大(越来越小)
    return u;           //返回位置
}
int find_ne(int v) //查找v的后继的节点编号
{
    find(v);
    int u = root; //根节点,此时x的父节点(存在的话)就是根节点
    if (tr[u].v > v)
        return u;   //如果当前节点的值小于x并且要查找的是前驱
    u = tr[u].s[1]; //查找后继的话在右儿子上找,前驱在左儿子上找
    while (tr[u].s[0])
        u = tr[u].s[0]; //要反着跳转,否则会越来越大(越来越小)
    return u;           //返回位置
}
int get(int v) //查找值等于v的点的编号;如果不存在值为v的点,则输出大于v的最小值所在的点的编号
{
    int u = root, res;
    while (u)
    {
        if (tr[u].v >= v)
            res = u, u = tr[u].s[0];
        else
            u = tr[u].s[1];
    }
    return res;
}
int find_k(int k) //查找排名为k的数
{
    int u = root;
    while (u)
    {
        if (tr[tr[u].s[0]].size >= k)
            u = tr[u].s[0];
        else if (tr[tr[u].s[0]].size + 1 == k)
            return tr[u].v;
        else
            k -= tr[tr[u].s[0]].size + 1, u = tr[u].s[1];
    }
    return -1;
}

void print(int u) //输出中序遍历,debug用
{
    if (tr[u].s[0])
        print(tr[u].s[0]);
    printf("%d ", tr[u].v);
    if (tr[u].s[1])
        print(tr[u].s[1]);
}
void debug()
{
    cout << "----------------" << endl;
    print(root);
    puts("");
    cout << ans3 << endl;
    for (auto item : S)
    {
        cout << -item << endl;
    }
    cout << "----------------" << endl;
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
    int StartTime = clock();
#endif
    scanf("%d%d", &n, &m);
    d[0] = INF;
    d[n + 1] = INF;
    insert(-INF), insert(INF);
    fir(i, 1, n)
    {
        scanf("%d", &d[i]);
        r[i] = d[i];
        S.insert(abs(d[i] - d[i - 1]));
        insert(d[i]);
        ans3 = min(ans3, min(abs(tr[find_pre(d[i])].v - d[i]), abs(tr[find_ne(d[i])].v - d[i])));
    }
    //debug();
    while (m--)
    {
        char op[10];
        int i, k;
        scanf("%s", op);
        if (!strcmp(op, "INSERT"))
        {
            scanf("%d%d", &i, &k);
            S.erase(S.find(abs(r[i] - d[i + 1])));
            S.insert(abs(k - d[i + 1]));
            S.insert(abs(r[i] - k));
            r[i] = k;
            insert(k);
            ans3 = min(ans3, min(abs(tr[find_pre(k)].v - k), abs(tr[find_ne(k)].v - k)));
            //debug();
        }
        else if (!strcmp(op, "MIN_GAP"))
        {
            printf("%d\n", *S.begin());
        }
        else
        {
            printf("%d\n", ans3);
        }
    }
#ifndef ONLINE_JUDGE
    printf("Run_Time = %d ms\n", clock() - StartTime);
#endif
    return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值