技术前沿:编程错误生成、煤矿火灾检测与图像字幕生成的创新探索
1. 语法错误程序的语言无关生成
在编程学习与教学中,生成语法错误的程序是一种有效的教学手段。相关团队使用用户友好的界面测试了错误生成程序,将生成的错误程序通过实际编译器进行测试,以确定其是否真的存在语法错误。为评估错误生成的准确性,采用了“语法错误有效性(Syntax Error Validity)”这一指标:
[
\text{语法错误有效性} = \frac{\text{准确的语法错误数量}}{\text{注入的总更改数量}} \times 100
]
通过该指标绘制错误生成算法的性能图,发现随着难度级别增加(引入更多错误)和程序规模增大(如 linkedlist.c ),引入的不准确错误数量会增多,这些错误包括语义错误或不会导致语法错误的更改(如双分号)。调试工具经过多人测试,新手程序员认为这是一种无需教师指导即可在线进行的有益练习。
2. 用于煤矿火灾检测的分布式 FBG 温度传感器
2.1 煤矿火灾危害与检测需求
地下煤矿火灾是一种极其可怕的灾害,多由阴燃引起。阴燃是由于煤炭内部的放热反应导致温度升高,进而引发爆炸。温度梯度是检测地下火灾的重要因素,即将发生的煤矿火灾通常会导致温度逐渐升高。因此,检测地下煤矿的温度变化至关重要。
2.2 传感器选择与 FBG 原理
传统的温度传感器如热电偶、电阻温度探测器(RTD)和热敏电阻可用于温度检测,但光纤布拉格光栅(FBG)传感器具有更好的性能,它不受电磁干扰。FBG 传感器的核心是周期性结构,具有不同的折射率,称为光栅。当白光
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



