三谈香浓熵:交叉熵与损失函数

本文深入探讨了交叉熵在机器学习中的应用,作为损失函数衡量模型分布与真实分布的差距。通过实例解释了交叉熵如何度量模型的好坏,并分析了其函数曲线,展示其最小值对应于模型完全拟合真实概率的情况。
摘要由CSDN通过智能技术生成

理解香浓熵
再谈香浓熵:编码与信息量

有了前两篇做基础,我们就可以来理解机器学习中的一种损失Loss(又称代价Cost 或误差 Error)函数了。

交叉熵作为损失函数

假设现在需要学习一个映射:输入为 X X X, 输出为 Y Y Y
我们把 X , Y X, Y X,Y看作一个随机变量,那么训练集中的每一对数据( x i x_i xi, y i y_i yi)就是随机变量的一个值。
这个随机变量的真实概率分布记为 P d a t a ( y ∣ x ) P_{data}( y | x ) Pdata(yx),这个真实分布我们不知道,是想通过学习去逼近的。
同时,学习模型本身是一个函数,其对应的概率分布记为 P m o d e l ( y ∣ x ) P_{model}( y | x ) Pmodel(yx),所谓学习就是通过不断地修正参数使得后者逼近前者。
现在,如何度量模型分布和真实分布之间的差距呢?一种方式就是用交叉熵。
L = ∑ X , Y P d a t a ( y ∣ x ) ⋅ − l o g P m o d e l ( y ∣ x ) L = \sum_{X,Y} P_{data}(y | x) \cdot -logP_{model}(y | x) L=X,YPdata(yx)logPmodel(yx)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值