Spark_任务执行过程

本文通过一个Spark日志分析应用实例,详细阐述了Spark任务的执行过程,包括RDD的创建、转换和行动操作的触发。介绍了调度器如何生成物理执行计划,以及在执行中如何进行流水线优化和利用缓存进行短路计算。每个任务在不同数据分区上执行相同操作,从输入数据计算到输出结果。
摘要由CSDN通过智能技术生成

下面的例子展示Spark执行的各个阶段,有助于我们了解用户代码如何被编译为下层的执行计划

使用Spark shell实现简单的日志分析应用

输入数据:

//input.txt
INFO This is a message with content
INFO This is some other content

INFO Here are some messages
INFO This is a warning

ERROE Something bad happend
WARN More details on the bad thing
INFO Back to normal messages%

导入数据

scala> val input = sc.textFile("/Users/lxy/Desktop/input.txt")
input: org.apache.spark.rdd.RDD[String] = /Users/lxy/Desktop/input.txt MapPartitionsRDD[1] at textFile at <console>:24

切分为单词并删掉空白行

scala> val tokenized = input.
     | map(line => line.split(" ")).
     | filter(words => words.size > 0)
tokenized: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[3] at filter at <console>:28

提取出每行的第一个单词(日志等级)并计数

scala> val counts = tokenized.
     | map(words => (words(0),1)).
     | reduceByKey{(x,y) => x+y}
counts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[5] at reduceByKey at <console>:30

使用toDebugString()方法查看RDD的谱系

//使用不同的缩进等级来表示RDD是否会在物理步骤中进行流水线执行
//下图表示物理执行只需要两个步骤
scala> counts.toDebugString
res1: String =
(2) ShuffledRDD[5] at reduceByKey at <console>:30 []
 +-(2) MapPartitionsRDD[4] at map at <console>:29 []
    |  MapPartitionsRDD[3] at filter at <console>:28 []
    |  MapPartitionsRDD[2] at map at <console>:27 []
    |  /Users/lxy/Desktop/input.txt MapPartitionsRDD[1] at textFile at <console>:24 []
    |  /Users/lxy/Desktop/input.txt HadoopRDD[0] at textFile at <console>:24 []

可以看到调用sc.textFile()方法首先创建了一个HadoopRDD对象,然后对该RDD进行了映射、筛选和过滤操作。

在调用行动操作之前,RDD都只是存储着能让我们计算出具体值的操作的描述信息,要触发实际计算,需要对RDD调用一个行动操作。比如collect()将数据收集到驱动器程序中.

scala> counts.collect()
res2: Array[(String, Int)] = Array((INFO,5), ("",2), (WARN,1), (ERROE,1))

spark调度器会创建出用于计算行动操作的RDD物理执行计划。我们调用collect()方法,spark的每个分区都会被物化出来并发送到驱动器程序中。spark调度器从最终被调用行动操作的RDD出发向上回溯所有必须要被计算的RDD。调度器会访问RDD的父节点、父节点的父节点,以此类推。递归向上生成所有计算必要的祖先RDD的物理计划。

更复杂的情况是RDD图与执行步骤并不是一一对应的。比如,当调度器进行流水线执行时,或把多个RDD合并到一个步骤中时。当RDD不需要混洗数据就可以从父节点计算出来时,调度器就会自动进行流水线执行。

除了流水线执行的优化外。如果一个RDD已经缓存在集群的内存或磁盘上时,spark的内部调度器也会自动截短RDD的谱系图,实行“短路”计算,直接基于缓存下来的RDD值进行计算。

如果将counts的值缓存下来,多次调用collect行动操作,只需一个步骤就可以完成。

特定的行动操作所生成的步骤的集合称为一个作业

一旦步骤图确定下来,任务就会被创建出来并发给内部的调度器。一个物理步骤会启动很多任务,每个任务都是在不同的数据分区上做同样的事情。

任务内部的流程是一样的:

  1. 从数据存储或者已有RDD或者数据混洗中获取输入数据
  2. 执行必要的操作来计算出这个操作所代表的RDD
  3. 把输出写入到一个数据混洗文件中,写入外部存储,或者发回驱动器程序。
Spark任务的详细执行流程如下: 1. 创建SparkContext:首先,Spark应用程序需要创建一个SparkContext对象,它是与集群通信的主要入口点。 2. 创建RDD:在Spark中,据被组织成弹性分布式据集(RDD)。RDD可以从外部存储系统(如HDFS)中读取据,也可以通过对已有RDD进行转换操作来创建。 3. 转换操作:Spark提供了一系列转换操作,如map、filter、reduce等。这些操作可以对RDD进行转换,生成新的RDD。转换操作是惰性求值的,即不会立即执行,而是记录下来以便后续执行。 4. 行动操作:当需要从RDD中获取结果时,需要执行行动操作。行动操作会触发Spark作业的执行,并将结果返回给驱动程序。 5. 任务划分:Spark将作业划分为一系列任务,每个任务处理RDD的一个分区。任务划分是根据据的分区情况和可用的计算资源进行的。 6. 任务调度:Spark任务调度到集群中的可用计算节点上执行任务调度器负责将任务分配给可用的Executor,并监控任务执行情况。 7. 任务执行:每个Executor会为分配给它的任务创建一个或多个线程,并在这些线程上执行任务任务执行过程中,Executor会将据从内存或磁盘中读取到计算节点上,并进行计算操作。 8. 据传输:在任务执行过程中,Spark会根据需要将据从一个节点传输到另一个节点。这种据传输可以是节点内的据传输,也可以是跨节点的据传输。 9. 结果返回:当任务执行完成后,结果会返回给驱动程序。驱动程序可以将结果保存到外部存储系统,或者进行进一步的处理和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值