引入:第一章 建立数学模型
数学建模——为实际问题建立数学模型
1.1 从现实对象到数学模型
原型:指人们在现实世界里关心、研究或者从事生产、管理的实际对象。
模型:指为了某个特定目的将原型的某一部分信息简缩、提炼而构造的原型替代物。
按模型替代原型的方式来分类,模型分为物质模型(形象模型)和理想模型(抽象模型)。
前者包括直观模型、物理模型等,后者包括思维模型、符号模型、数学模型等。
- 直观模型:实物模型,比如玩具、照片。
- 物理模型:为了一定目的,根据相似原理构造的模型。
- 思维模型:通俗来说就是,“根据以往经验来说,……(做出决策)”。[主观、片面、模糊、偶然、难以检验]
- 符号模型:在约定或假设下借助专门的符号、线条等,按一定形式组合起来描述原型。
模型具有强烈的目的性。
数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。(是对实际现象的近似刻画,以便更好的认识现实世界的特定对象)
示例(1)
[课本,“航行问题”]
示例(2)
[课本,“包饺子中的数学”]