《数学模型(第五版)》引入:第一章 建立数学模型

博客围绕数学建模展开,介绍了原型与模型的概念,模型分为物质模型和理想模型,如直观、物理、思维、符号、数学模型等。还给出数学模型的定义,即对现实对象简化假设后用数学工具得到的结构,并列举了“航行问题”“包饺子中的数学”等示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引入:第一章 建立数学模型

 

数学建模——为实际问题建立数学模型

 

1.1 从现实对象到数学模型

原型:指人们在现实世界里关心、研究或者从事生产、管理的实际对象。

模型:指为了某个特定目的将原型的某一部分信息简缩、提炼而构造的原型替代物。


按模型替代原型的方式来分类,模型分为物质模型(形象模型)和理想模型(抽象模型)。

前者包括直观模型、物理模型等,后者包括思维模型、符号模型、数学模型等。


  • 直观模型:实物模型,比如玩具、照片。
  • 物理模型:为了一定目的,根据相似原理构造的模型。
  • 思维模型:通俗来说就是,“根据以往经验来说,……(做出决策)”。[主观、片面、模糊、偶然、难以检验]
  • 符号模型:在约定或假设下借助专门的符号、线条等,按一定形式组合起来描述原型。

模型具有强烈的目的性。

数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。(是对实际现象的近似刻画,以便更好的认识现实世界的特定对象)

 

示例(1)

67f5282c4b6f480d818768d569d9fa93.jpg

 [课本,“航行问题”]

示例(2)cd16f8d8c919488682872c30bc412ed8.jpg

[课本,“包饺子中的数学”] 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值