AI 浪潮来袭,国内发展航向何方?

一、国内 AI 发展现状
在这里插入图片描述

(一)行业规模与应用领域
目前我国人工智能在数据、算力、算法和应用领域等方面均取得了较大的进展,2022 年国内人工智能市场规模为 2845 亿元,同比增长 43.18%。从应用领域来看,目前我国的人工智能在城市管理及运营、工业、金融、互联网、零售、医疗、教育等领域都有不同程度的应用,其中城市管理及运营应用领域占比较高。
人工智能在零售领域的应用非常广泛,如客流统计、智能供应链、无人便利店、无人仓库 / 无人车等都是热点方向。京东自主开发的无人仓库采用大量智能物流机器人进行协调配合,通过人工智能、深度学习、图像智能识别、大数据应用等技术,让工业机器人能够进行自主判断和行为,完成各种复杂任务,在商品分拣、运输、仓库等环节实现自动化。图谱技术将人工智能技术应用于客流统计,通过基于人脸识别的客流统计功能,商店可以从性别、年龄、表情、新老顾客、停留时间等维度建立客流的用户人像,为调整经营策略提供数据基础,帮助商店从匹配实际的角度进行经营,提高转化率。
在医疗领域,目前在垂直图像算法和自然语言处理技术领域,可以基本满足医疗行业的需求,市场上有许多技术提供商,如德商云兴、人工智能细胞识别医疗诊断系统的研发,提供智能辅助诊断服务平台,如水医疗、统计和医疗数据处理等。虽然智能医疗在辅助诊断与治疗、疾病预测、医学影像辅助诊断、药物开发等方面发挥着重要作用,但由于医院间医学影像数据与电子病历的不循环,企业与医院之间的合作不透明,使得技术发展与数据供应存在矛盾。
交通领域,智能发展交通网络系统是通信、信息和控制企业技术在交通安全系统中集成应用的产物。ITS 应用最广泛的地区是日本,其次是美国、欧洲等地区。目前,我国在 ITS 方面的应用主要是可以通过对交通中的车辆流量、行车速度问题进行数据采集和分析,可以对交通方式进行研究实施过程监控和调度,有效提高通行能力、简化交通资源管理、降低环境污染等。
教育领域,科大讯飞和普通教育等公司已经开始探索人工智能在教育领域的应用。通过图像识别,可以通过机器对试卷进行校正和答题,通过语音识别提高发音,人机交互可以在线答题。人工智能与教育的结合可以在一定程度上改善教育部门教师分布的不平衡和高成本,从工具层面为教师和学生提供更有效的学习方法。然而,它不能对教育内容产生更实质性的影响。
家居领域,智能家居基于物联网(IoT)技术,由智能硬件、软件和云计算平台构成完整的家居生态系统。用户可以远程控制设备,设备可以互联,自主学习,优化家庭环境的安全性、节能性、便利性等。值得一提的是,近两年来,随着智能语音技术的发展,智能扬声器已经成为一个亮点。天猫、小米等公司推出了自己的智能音箱,不仅成功打开了家居市场,也培养了用户未来购买更多智能家居产品的习惯。然而,目前国内市场上智能产品的种类很多,如何突破这些产品之间的通信障碍,为智能家居建立一个安全可靠的服务环境是业界下一个关注的焦点。
物流领域,物流业通过运用智能搜索、推理规划、计算机视觉和智能机器人技术,在运输、仓储、配送、装卸过程中实现了自动化,基本上可以实现无人操作。例如,利用大数据对货物的智能配送进行规划,优化物流供应配置,需求匹配,物流资源配置。目前,物流行业的大部分人力资源都分布在 “最后一英里” 的配送环节,京东、苏宁、新秀赛车等开发无人驾驶飞行器、无人驾驶飞行器,以努力抓住市场机遇。
安防领域,近年来,我国安全监控行业发展迅速,视频监控的数量不断增加,在公共场景和个人场景中安装的监控摄像头总数已超过 1.75 亿台。此外,在一些一线城市,视频监控已实现全面覆盖。然而,与国外相比,中国的安全监测领域仍有很大的增长空间。安防监控行业的发展中国经历了四个经济发展研究阶段,分别为模拟监控、数字监控、网络高清、和智能监控数据时代。每一次行业变革,都得益于算法、芯片和零组件的技术企业创新,以及由此带动的成本不断下降。因而,产业链上游的技术产品创新与成本控制自己成为安防监控系统主要功能结构升级、产业市场规模增长的关键,也成为一个产业可持续健康发展的重要理论基础。
(二)产业集群分布
我国人工智能产业发展主要集聚在京津冀、长三角、珠三角、西部地区的成渝和西安、中部地区的武汉和长沙等地。其中,京津冀、长三角和珠三角城市群人工智能企业比较集中,产业集群效应也比较明显。
中国人工智能产业集群分布:京津冀、长江三角洲、珠江三角洲和川渝地区企业簇群及其创新生态结构的演化,是评价具有全球竞争力的人工智能产业集群发展的重要指标。报告通过我国 2200 家人工智能骨干企业的属性和关系数据,分析人工智能产业集群发展过程中企业簇群的分布和创新生态结构的演化趋势。2200 家人工智能骨干企业主要分布在京津冀、长江三角洲、珠江三角洲和川渝地区。排名第一的是长江三角洲地区,占比 30.95%;排名第二的是京津冀地区,占比 29.36%;排名第三的是珠江三角洲地区,占比 26.45%;排名第四的是川渝地区,占比 3.55%。
在 2200 家人工智能骨干企业的省份分布中,排名第一的是北京市,占比 28.09%;排名第二的是广东省,占比 26.45%;排名第三的是上海市,占比 14.23%。排名第四和第五的分别是浙江省和江苏省,占比 8.95% 和 6.86%。排名前五的省份拥有的人工智能企业数占全国的比重达到 84.58%。
在 2200 家人工智能骨干企业的城市分布中,排名第一的是北京市,占比 28.09%;排名第二的是上海市,占比 14.23%;排名第三的是深圳市,占比 13.36%;排名第四和第五的分别是广州市和杭州市,占比为 8.55% 和 7.68%。排名前五的城市拥有的人工智能企业数量占全国的比重达到 71.91%。
从 2200 家人工智能骨干企业的省份和城市分布看,我国人工智能产业集群是高度集聚的。其中,京津冀、长江三角洲、珠江三角洲和川渝地区是人工智能企业集聚的主要区域。经济社会的智能化需求牵引、科技创新资源的富集和政府的积极响应,是人工智能企业区域聚集的关键因素。
中国人工智能产业发展表现出明显的集群化趋势。中国工程院中国新一代人工智能发展战略研究院近日发布的《中国新一代人工智能科技产业发展 2023》显示,中国人工智能产业发展表现出明显的集群化趋势。专家认为,在人工智能产业集群中,平台企业、中小企业、科研院所和投资者之间相互协同,共同构建富有活力的产业创新生态。
人工智能产业集群构建起分工明确、合作紧密的人工智能创新生态系统,业内人士用 “上下楼就是上下游,产业园就是产业链” 来形容其优点。长阳创谷是上海市人工智能应用试点园区,聚集大量人工智能产业链上下游企业。园区定期把有共同需求的企业组织起来,开展各类沙龙、茶话会等,分享经验、碰撞创意、对接需求。正是通过这些活动,园区内的上海快卜新能源科技有限公司完成了资源对接,推动 “光储充检” 一体化智能超级快充站项目成功落地。
人工智能产业集群通常汇聚人工智能基础层、技术层、应用层全产业链企业,功能协调、协作高效。汇纳科技是一家人工智能与大数据应用解决方案提供商,落户在上海市张江人工智能岛。汇纳科技联席总裁张柏军说:“有时候在园区里散个步,大家突然有个项目想法,当天就可以组织人员对接,让想法落地。”
工信部公布的数据显示,中国人工智能产业蓬勃发展,核心产业规模达到 5000 亿元,企业数量超过 4300 家,创新成果不断涌现。业内人士认为,一批行业龙头和独角兽企业的快速发展,带动中国人工智能产业集群加速成长。
多地立足产业基础,形成各具特色的人工智能产业集群。位于安徽省合肥市高新区的 “中国声谷”,是国家级人工智能重要产业基地。最初,“中国声谷” 依托本地龙头企业科大讯飞发展智能语音产业。科大讯飞发挥 “链主” 企业 “头雁” 作用,带动产业链上下游企业聚集发展,吸引了大量企业落户 “中国声谷”,进而壮大成智能语音生态集群。如今,这里汇聚 1000 多家企业,形成千亿级的人工智能产业集群。
早在 2017 年,国务院就印发《新一代人工智能发展规划》,提出 “结合各地区基础和优势,按人工智能应用领域分门别类进行相关产业布局”,鼓励地方围绕人工智能产业链和创新链,打造人工智能产业集群和创新高地。不少地方顺应人工智能发展势头,规划布局本地人工智能特色产业集群。2022 年 9 月,《重庆市发展汽车软件与人工智能技术应用行动计划(2022—2025 年)》发布,提出做大做强汽车软件与人工智能产业集群。今年 6 月,《北京市机器人产业创新发展行动方案(2023—2025 年)》发布,提出到 2025 年培育 100 种高技术高附加值机器人产品、100 种具有全国推广价值的应用场景,打造国内领先、国际先进的机器人产业集群。
《中国新一代人工智能科技产业发展 2023》指出,中国人工智能产业集群主要分布在京津冀、长江三角洲、珠江三角洲和川渝地区的重点城市。通过外部创新资源的引入和内部创新资源的激活,西部地区的西安、中部地区的武汉和长沙以及东北地区的沈阳、大连、哈尔滨等出现人工智能产业集群雏形。
多地加快布局 “拼算力”。算力是人工智能发展的 “底座”。不少地方加快部署建设算力中心,保障人工智能产业集群的算力需求。近日,科技部正式批复,支持武汉人工智能计算中心建设国家新一代人工智能公共算力开放创新平台。“我们已为 300 余家科研机构和企业、高校提供公共算力服务,帮助实现人脸识别、图像识别、语音识别等应用场景。” 武汉人工智能计算中心工作人员介绍。
国家信息中心发布的《智能计算中心创新发展指南》显示,目前中国超过 30 个城市正在建设或提出建设智能计算中心,整体布局以东部地区为主,并逐渐向中西部地区拓展。“算力是数字经济时代的发动机,有利于形成高端产业在区域集群化发展的向心力。” 北京师范大学政府管理研究院副院长宋向清说。
二、国内 AI 面临的挑战
在这里插入图片描述

(一)人才短缺挑战
当前,国内人工智能领域面临着严峻的人才短缺挑战。一方面,人工智能作为一个高度复杂的领域,需要具备深厚专业知识和跨学科能力的高端复合型人才。然而,我国现有的人才培养体系尚不健全,难以在短时间内满足市场对这类人才的巨大需求。
从人才培养周期来看,培养一名优秀的人工智能专业人才往往需要较长时间。这使得人才的供应速度远远跟不上人工智能产业的快速发展,进而导致人工智能人才供不应求的局面。尤其是高端复合型人才,更是处于极度紧缺的状态。
据相关报告显示,2024 年中国人工智能行业人才供需比仅为 0.39,相当于 5 个岗位竞争 2 个人才,人才缺口达 500 万。目前,我国共有 440 所院校开设人工智能专业,但高校在人工智能相关教育中仍缺乏高水平的课程建设经验,导致学生学习的专业知识与实际就业存在一定差异。
(二)盈利困难挑战
大部分人工智能企业面临盈利难的困境。首先,技术研发成本高是一个主要问题。人工智能的本质是数据,而目前数据本身面临诸多挑战,如某些行业现有数据资源不多,且大部分行业数据存在孤岛现象。企业要打造理想的技术和产品,就需要投入巨大的人力、物力和财力来创造适合的研发条件,这无疑增加了研发成本。
其次,技术更新迭代速度快。人工智能领域技术发展迅速,企业需要持续不断地投入人力和成本以跟上技术进步的步伐。很少有企业能够负担得起这种长期的高投入,即使一些企业承受了下来,要实现盈利也比较困难。
再者,收益周期长。人工智能企业研发出的技术和产品,如果不能进行商业化的落地和规模化的应用,便不具备任何价值。而找到合适的应用场景并实现规模化应用并非易事,这就导致了收益周期较长。
最后,下游应用落地定制比例高、周期长,成本较高、风险大。我国的人工智能企业一直践行着 “拿着锤子找钉子” 的研发模式,并没有真正打通产业链。当企业辛苦打造出产品后,却可能发现找不到合适的应用场景,或者应用价值不高,白白浪费了高额融资。
(三)数据安全问题
数据安全是人工智能安全的关键所在。人工智能算法设计与优化需要以海量优质数据资源为基础,数据质量和安全直接影响人工智能系统算法模型的准确性,进而对人工智能应用安全造成威胁。
目前,人工智能应用带来的红利和其引发的安全隐患如同一枚硬币的两面,需要全行业高度关注并找到有效的应对方法。人工智能应用面临着 7 大数据安全威胁,包括模型中毒、隐私泄露、数据篡改、内部威胁、针对性蓄意攻击、大规模采用以及 AI 驱动的攻击等。
例如,模型中毒是一种对抗性攻击形式,威胁行为者可以向模型中注入恶意数据,导致模型对数据进行错误分类并做出错误决策。隐私泄露也是一个敏感问题,用户很难知道他们的数据是否流入了人工智能算法的应用中,且很少有隐私策略包含这些信息。数据篡改、内部威胁、针对性蓄意攻击等也给人工智能的数据安全带来了巨大挑战。
同时,人工智能技术引发的数据安全隐患也不容忽视。百度 CEO 李彦宏表示,人工智能技术加速演进,引发的数据安全隐患需要拥有先进人工智能技术的国家通力协作,从人类命运共同体的高度来制定规则。此外,人工智能导致的数据安全风险正成为一个不容忽视的现象,当我们采用人工智能时,必须考虑到这项技术的安全性、可靠性、合规治理。
三、国内发展 AI 的重点领域
在这里插入图片描述

(一)河南的 “人工智能 +” 行动计划
河南省积极推动 “人工智能 +” 行动计划,重点推进医疗、教育、科研、工业、农业、文旅、城市管理、生态保护、防灾减灾等 9 个重点行业人工智能应用。
在医疗方面,重点发展智能医疗、智能医药、智能中医药管理、智能健康管理等应用场景。依托省内医疗领域科研机构和医院,加快推进智能医学研究设施建设,推动人工智能技术在基层卫生健康行业场景应用,提升基层普惠医疗服务水平。
教育方面,重点发展智能化教育、智能教育管理、智能教育评价等应用场景。依托省级智慧教育平台,推进智慧校园、在线课堂、虚拟教室、智能学习平台建设,构建虚实融合与跨平台支撑的智能教育基础环境,汇集优质教学案例、讲义素材、施教方法、学生心理健康等教学知识,建设跨学科、跨学段教育大模型和个性化人工智能辅助教学工具。
科研领域,重点发展生物育种、合成生物、药物研发、基因研究、新材料研发等应用场景。支持科研机构与人工智能企业联合研发面向重大科学问题的人工智能大模型和专用平台,探索人工智能助力科研模式,缩短科研实验周期,提高科研能力。
工业方面,重点发展产品辅助设计、智能柔性生产、精细化质量检测、智能供应链管理等应用场景。聚焦 “7+28+N” 产业链群,支持链主企业联合人工智能企业构建工业大模型和产品设计、虚拟仿真、计算机辅助工程等平台,汇集海量工业数据,培育 “产业大脑”,促进产业链上下游企业数字融通发展,支撑生产监控、零件追踪、设备预维护、缺陷分析、智能决策分析及全流程自判断与自决策,实现全流程智能化改造。结合真实场景发展融合具身智能的机器人,以应用牵引具身智能迭代演进。
农业方面,重点发展农作物智能管理、智能养殖、智能农机等应用场景。依托省内高校、科研院所和各类创新资源平台,建设农业大模型,加强智能农业设施建设。
文旅方面,重点发展智慧景区、文物保护、内容创作等应用场景。汇聚文学作品、历史建筑、文化遗迹、景点等优质文旅数据,构建文旅大模型。利用大模型技术强化人机交互能力、内容生成能力,深化在智能化景区管理、交互式沉浸体验、精准化营销引流等方面应用,提升博物馆、图书馆数字化供给效能,发展短视频剧本、广告文案、绘图设计等内容创作领域细分场景。支持建设基于大模型技术的甲骨文字检测系统,推动甲骨文等文物保护整理与文创产品开发。
城市管理方面,重点发展智慧交通、政务服务、社区治理等应用场景。依托新型智慧城市试点建设,在城市大脑建设中运用大模型技术,构建互联网地图数据、物联网传感数据和位置服务数据等多元融合的城市时空运行数据框架,实现智慧城市底层业务统一感知、关联分析和态势预测。构建交通大模型,精准预测交通流量及拥堵情况,优化交通信号灯控制机制,推进固定线路、封闭园区等场景下的智能驾驶发展。
生态保护方面,重点发展污染预测、生态环境风险处置、黄河保护等应用场景。打造生态环境数据 “一张图” 和天空地立体智能感知 “一张网”,提供大气、水质、土壤状态监测和趋势预测等服务,及时发现和处置生态环境风险。依托省内创新资源和平台,打造黄河流域区域协同决策科学中心,建设数字孪生黄河。
防灾减灾方面,重点发展灾害预警、突发事件处理、防汛、地质灾害防治、火灾防控和消防救援等应用场景。
河南省还通过加大人才引育力度、提供私人订制化金融产品、依托 “智慧岛” 打造人工智能专业孵化器等措施,为 “人工智能 +” 行动计划提供有力支持。
(二)中美人工智能发展重点对比
我国除了发展通用 AI 以外,还大力发展 “AI+”,为行业赋能,为特定行业或领域定制开发人工智能应用,如医疗 AI、金融 AI、制造 AI 等。
在医疗 AI 方面,我国 AI 医疗行业起步较晚,但近年来发展迅速。2024 年中国 AI 医疗行业发展现状分析显示,供给主体类型多样,包括国外厂商、智能医疗设备厂商、医疗大数据模型企业、AI 药物研发企业、AI 诊疗服务企业等。AI 医疗市场规模快速增长,2019 - 2023 年,在产业政策的支持下,中国 AI 医疗市场规模从 27 亿元快速增长至 88 亿元,年复合增速达 34%。未来,AI 医疗行业发展趋势包括规范化、远程化、便捷化、个性化、精准化。
金融 AI 行业也取得了显著进展。2021 年 AI 金融核心市场规模达到 296 亿元,带动相关产业规模 677 亿元。金融机器学习产品成为市场主要拉力之一,2021 年金融机器学习产品占 AI + 金融核心产品市场规模比重达 42.2%。金融 AI 技术将会被应用于更多的金融业务领域,同时金融机构也需要依靠 AI 技术来提高客户服务和用户体验。
与美国相比,我国在 AI + 领域具有得天独厚的优势。我国制造业发达,为人工智能技术和产品应用在制造业提供了良好的机遇和巨大的市场空间。美国将重点放在通用 AI 上,而我国除了发展通用 AI 以外,还大力发展 “AI+”,专注于解决特定的行业问题,为行业赋能。中美人工智能发展重点存在明显差异,孰优孰劣,未来见分晓。
四、国内 AI 未来发展方向
在这里插入图片描述

(一)复合式 AI 将引领未来
复合式 AI 作为一种将基于数据驱动的 AI 和基于逻辑、规则的符号 AI 整合在一起的人工智能模式,正逐渐成为未来发展的关键趋势。正如 Gartner 研究总监闫斌所指出,复合式 AI 能够在不同场景下发挥不同模型的优势,实现更务实的应用。
在当前数字化浪潮下,企业面临着诸多挑战,而复合式 AI 的出现为企业智能化改革带来了新动力。它具备高效的学习能力与丰富的知识表示能力,通过整合多种 AI 技术,以更大的灵活性和更强的适应性应对复杂的业务需求。例如,企业可以利用复合式 AI 在瞬息万变的市场中快速优化流程、提升决策质量,将原本需要数月的分析时间大幅缩短。
青云科技作为行业领先的 AI 基础设施提供商,积极推动复合式 AI 的应用落地。通过构建高效、易用的算力平台,企业能够轻松整合各种 AI 模型与算法,借助预构建的解决方案降低技术整合门槛。其直观的开发环境和自动化的模型训练,为企业提供了简便的构建、测试与部署流程,减少开发时间,提升效率。同时,青云科技提供的租户隔离、访问控制等安全策略,确保了数据与模型的安全稳定。云原生技术与模块化设计也使得 AI 应用能够快速部署并轻松扩展到云端,确保企业在不确定的市场环境中保持竞争优势。
(二)大模型的两条发展路线
周鸿祎提出大模型未来会形成泾渭分明的两条发展路线。一条是越做越大的 “原子弹路线”,即继续探索超级人工智能的发展方向,探索人类的星辰大海;另一条是结合垂直领域数据进行训练的专业大模型之路。周鸿祎认为,走专业大模型之路不需要卷算力、卷数据,只需要在一个百亿参数,甚至几十亿参数的通用大模型的基础之上,结合垂直领域的高密度高质量知识进行训练就可以,这样就能把大模型拉下神坛,而后者更适合中国大模型产业发展。
(三)AI 大模型五大产业趋势
一是 AI 云侧与端侧大模型满足不同需求,C 端用户将成为端侧的主要客群。随着人工智能技术的发展,云侧大模型和端侧大模型将分别在不同场景发挥作用,满足不同用户的需求。端侧大模型将更加贴近 C 端用户,为他们提供便捷、高效的服务。
二是 AI 大模型趋于通用化与专用化,垂直行业将是大模型的主战场。通用大模型和专用大模型将共同发展,垂直行业将成为大模型应用的重点领域。在垂直行业中,大模型可以结合行业特点和需求,提供更加精准、高效的解决方案。
三是 AI 大模型将广泛开源,小型开发者可调用大模型能力提升开发效率。开源将促进大模型的发展和应用,小型开发者可以利用大模型的能力,快速提升开发效率,推动创新。
四是 AI 高性能芯片不断升级,AI 大模型产业生态体系将不断完善。随着 AI 大模型的发展,对高性能芯片的需求将不断增加。芯片的不断升级将为大模型提供更强大的计算能力,同时也将促进大模型产业生态体系的不断完善。
五是 AI 大模型可以创造新价值、适应新产业、重塑新动能,是加快发展新质生产力的关键要素。面对未来,我国需进一步加强资源与研发力量的统筹,强化大模型在发展中的场景牵引作用,促进经济社会的高质量发展,以实现大模型技术的高质量应用突破,驱动实体经济的蝶变和产业变革。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值