2025 年 AI 在多个方面有望取得显著发展,以下是一些主要的趋势:
科学研究范式变革:大模型引领下的 AI4S(AI for Science)成为推动科学研究范式变革的关键力量。多模态大模型将进一步融入科学研究,为生物医学、气象、材料发现、生命模拟、能源等基础与应用科学的研究开辟新方向,赋能多维数据的复杂结构挖掘,辅助科研问题的综合理解与全局分析。
具身智能发展:2025 年被认为是具身智能元年。在行业格局上,近百家的具身初创企业可能迎来洗牌,厂商数量开始收敛;技术路线上,端到端模型继续迭代,小脑大模型的尝试或有突破;商业变现方面,会看到更多工业场景下的具身智能应用,部分人形机器人迎来量产。
多模态大模型进化:构建原生多模态大模型成为多模态大模型进化的重要方向,即从训练之初就打通多模态数据,实现端到端输入和输出,对齐视觉、音频、3D 等模态的数据,以更高效地模拟人类思维过程。
Scaling Law 扩展:基于 Scaling Law 推动基础模型性能提升的训练模式 “性价比” 持续下降,后训练与特定场景的 Scaling Law 不断被探索,强化学习作为发现后训练、推理阶段的 Scaling Law 的关键技术,将得到更多应用和创新。
世界模型发展:更注重 “因果” 推理的世界模型有望成为多模态大模型的下一阶段,其赋予 AI 更高级别的认知和更符合逻辑的推理与决策能力,能推动 AI 在自动驾驶、机器人控制及智能制造等前沿领域的深度应用,探索人机交互的新可能。
合成数据应用增加:高质量数据的短缺成为大模型进一步发展的阻碍,合成数据成为基础模型厂商补充数据的首选。它可以降低人工治理和标注成本,缓解对真实数据的依赖,提升数据多样性,有助于提高模型处理长文本和复杂问题的能力,促进大模型的应用落地。
推理优化加速:大模型硬件载体从云端向手机、PC 等端侧硬件渗透,这使得推理优化迭代加速成为 AI Native 应用落地的必要条件。算法加速和硬件优化技术持续迭代,双轮驱动以克服大模型在端侧设备上落地应用面临的推理侧开销限制等挑战。
智能体应用深化:2025 年,更通用、更自主的智能体将重塑产品应用形态,进一步深入工作与生活场景,成为大模型产品落地的重要应用形态。会看到更多智能化程度更高、对业务流程理解更深的多智能体系统在应用侧的落地。
AI 应用热度攀升:生成式模型在图像、视频侧的处理能力得到大幅提升,叠加推理优化带来的降本,以及 Agent/RAG 框架、应用编排工具等技术的持续发展,为 AI 超级应用的落地奠定了基础,AI 应用热度持续攀升,接近应用爆发的前夕。
安全治理体系完善:随着模型能力提升,大模型作为复杂系统带来了潜在的失控风险,AI 安全治理体系将持续完善,各方将探讨引入新的技术监管方法,平衡行业发展和风险管控。
从投资角度来看,全球 AI 投资急速上升,主要集中在 AI 基础设施和 AI + 赋能应用两个方向。同时,2024 年全球人工智能领域的风险投资首次突破千亿美元大关,基础设施和横向应用领域正吸引更多资本关注,独角兽企业快速崛起。而在地域上,欧洲展现出强劲的发展潜力,其早期投资比例达到了 81%,创下 7 年来的新高。
05-05
124

05-04
200

05-03
854

04-30
248

04-30
346
