关键技术
自然语言处理:使系统能够理解和处理人类自然语言,实现人机之间的高效交互。例如,柳工的 AI 故障诊断与维修专家 “柳小元”,通过输入问题,它能进一步明确故障点,并快速、准确地给出故障诊断和维修方案。
计算机视觉:让系统具备感知视觉信息的能力,可用于产品质量检测、设备状态监测、物料识别与定位等。如科远智慧的 AI 机器视觉技术,可应用于冶金行业的字符识别、行车起吊物位置及偏差识别等场景。
机器学习与深度学习:系统能够从大量数据中学习知识和模式,进行数据分析、预测和决策优化。比如武重集团的 “武重云” 在线智能服务平台,通过大数据分析预测刀具磨损、部件老化等潜在故障。
机器人技术:实现机械设备的自动化操作和控制,完成各种复杂任务。像在 2024 年工博会上亮相的东土科技工业 AI 智能机器人控制系统,能通过 AI 大模型将人类自然语言指令转换成机器人的运动命令,控制机器人工作。
应用场景
生产制造:用于自动化生产线的任务调度、质量检测、设备监控与故障预警等,提高生产效率和产品质量,降低人工成本。例如,Manus 驱动的机械臂在比亚迪武汉工厂实现了新能源汽车电池包组装、质量检测到包装的全流程无人化,良品率提升 29%。
设备运维:实时监测设备运行状态,预测设备故障,提前进行维护保养,减少设备停机时间和维修成本。例如,柳工的 AI 维修专家可指导服务人员精准定位故障部位,其产品故障诊断准确性超过 87%,帮助维修效率提升了 14%。
物流仓储:优化仓储布局、货物分拣与搬运路径规划,提高物流效率和准确性。如京东物流引入 Manus+AGV 系统,仓库分拣效率达 3000 件 / 小时,人力成本降低 73%。
优势与价值
提高生产效率:自动化完成繁琐的任务,减少人工干预,加快生产流程,提高生产速度和产量。
提升产品质量:通过精准的检测和控制,及时发现和纠正生产过程中的问题,降低产品缺陷率,提高产品一致性和稳定性。
降低成本:减少人工成本、设备维修成本和原材料浪费,优化资源配置,提高企业经济效益。
增强安全性:代替人类从事危险、恶劣环境下的工作,降低人员伤亡风险;同时,通过实时监测和预警,预防设备故障和事故的发生。
促进创新和发展:为机械设备产业带来新的技术和理念,推动产业升级和转型,创造新的商业模式和市场机会。
04-30
280
