搜索与图论(二)

文章介绍了图的基本概念,包括无向图、有向图、完全图、顶点的度等,并阐述了图的两种存储结构——邻接矩阵和邻接表。接着,通过一个实例展示了如何使用深度优先遍历(DFS)和广度优先遍历(BFS)遍历图,以解决实际问题,如文献引用关系的探索。

图(Graph)

是由一个非空的顶点集合和一个描述顶点之间关系 即边(Edges)的有限集合组成的一种数据结构。

可以定义为G(V,E)

其中, G表示—个图,V是图G中顶点的集台,E是图G中边的集台。

图的相关术语

(1)无向图(mdigaph)。在一个图中,如果每条边都没有方向则称该图为无向图。

(2)有向图(digraph)。在一个图中,如果每条边都有方向称该图为有向图。

(3)无向完全图。在一个无向图中, 如果任意两项点都有一条直接边相连控图为无向完全图。

(4)有向完全图。在个有向图中, 如果任意两顶点之间都有方向互为相反的相连接。则称该图为有向完全 图

(5)顶点的度、入度、出度

在无向图中:

一个项点拥有的边数,称为该项点的度。

在有向图中:

一个顶点拥有的弧头的数目,称为该项点的入度,记为ID(v);

一个顶点拥有的弧尾的数目,称为该顶点的出度,记为OD(v);

一个顶点度等于顶点的入度+出度,即TD(v)=ID(v)+ OD(v)。

(6)。图的边或弧有时具有与它有关的数据信息,这个数据信息就称为权(Weight)。

(7)(Network)。每条边都有与它相关的数,称为权,这些权可以表示从一个顶点到另一个顶点的距离

或耗费等信息。这种带权的图叫做网。

(8)路径、路径长度。观尽Vi到观息Vj间的路径是指项点序列

路径上边或弧的数目称为路径长度。

(9)回路或环。在一个路径中,若其第一个顶点和最后一个顶点是相同的, 则称该路

为一个回路或环。

(10)简单路径。若表示路径的顶点序列中的顶点各不相同,则称这样的路径为简单路

径。

(11)简单回路。除了第一个和最后一个顶点外,其余各顶点均不重复出现的回路为简

单回路。

(12)子图 对于图G=(V,E),G'=(V',E'), 若存在V'是V的子集,E'是E的子集,

则称G'和G的一个子图。

(13)连通图、连通分量。在无向图中,如果从一个顶点vi到另一个顶点vj有路径,则称顶点v:和Vj是连通

的。任意两顶点都是连通的图称为连通图。无向图的极大连通子图称为连通分量。

(14)强连通图、强连通分量。对于有向图来说,若图中任意一 对顶点vi和vj (i≠j)均有从一个顶点vi到 另一个顶点vj有路径,也有从Vj到Vi的路径,则称该有向图是强连通图。有向图的极大强连通子图 称为强连通分量。

(15)生成树。连通图G的一个子图如果是一棵包含G的所有顶点的树,则该子图称为G的生成(Spanning Tree)。在生成树中添加任意一条属于 原图中的边必定会产生回路,因为新添加的边使其所依附的两 个顶点之间有了第二条路径。若生成树中减少任意一条边,则必然成为非连通的。n个顶点的生成树 具有n-1条边。

图的存储结构

  • 邻接矩阵

图的邻接矩阵(Adjacency Matrix) 存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。

定义出邻接矩阵的存储结构

#define MaxVertexNum 100    //顶点数目的最大值
typedef char VertexType;    //顶点的数据类型
typedef int EdgeType;    //带权图中边上权值的数据类型
typedef struct{
    VertexType Vex[MaxVertexNum];    //顶点表
    EdgeType Edge[MaxVertexNum][MaxVertexNum];    //邻接矩阵,边表
    int vexnum, arcnum;    //图的当前顶点数和弧树
}MGraph;
  • 邻接表

邻接表(Adjacency Lis) 是图的一种顺序存储与链式存储结合的存储方法。邻接表表

示法类似于树的孩子链表表示法。就是对于图G中的每个顶点vi,该方法将所有邻接于n

的顶点vj;连成一个单链表, 这个单链表就称为顶点Vi的邻接表。再将所有顶点的邻接表表

头放到数组中,就构成了图的邻接表。

图的邻接表存储结构定义如下:

#define MAXVEX 100    //图中顶点数目的最大值
type char VertexType;    //顶点类型应由用户定义
typedef int EdgeType;    //边上的权值类型应由用户定义
/*边表结点*/
typedef struct EdgeNode{
    int adjvex;    //该弧所指向的顶点的下标或者位置
    EdgeType weight;    //权值,对于非网图可以不需要
    struct EdgeNode *next;    //指向下一个邻接点
}EdgeNode;

/*顶点表结点*/
typedef struct VertexNode{
    Vertex data;    //顶点域,存储顶点信息
    EdgeNode *firstedge    //边表头指针
}VertexNode, AdjList[MAXVEX];

/*邻接表*/
typedef struct{
    AdjList adjList;
    int numVertexes, numEdges;    //图中当前顶点数和边数
}

P5318 【深基18.例3】查找文献

小K 喜欢翻看洛谷博客获取知识。每篇文章可能会有若干个(也有可能没有)参考文献的链接指向别的博客文章。小K 求知欲旺盛,如果他看了某篇文章,那么他一定会去看这篇文章的参考文献(如果他之前已经看过这篇参考文献的话就不用再看它了)。

假设洛谷博客里面一共有 n(n≤105) 篇文章(编号为 1 到 n)以及 m(m≤106) 条参考文献引用关系。目前小 K 已经打开了编号为 1 的一篇文章,请帮助小 K 设计一种方法,使小 K 可以不重复、不遗漏的看完所有他能看到的文章。

这边是已经整理好的参考文献关系图,其中,文献 X → Y 表示文章 X 有参考文献 Y。不保证编号为 1 的文章没有被其他文章引用。

#include<iostream>  //头文件头文件头文件
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;  
struct edge{       //存边结构体
    int u,v;
}; 
vector <int> e[100001];  //两个vector刚才已经详细讲过了
vector <edge> s;
bool vis1[100001]={0},vis2[100001]={0}; //标记数组
bool cmp(edge x,edge y){  //排序规则
    if(x.v==y.v)
    return x.u<y.u;
    else return x.v<y.v;
}
void dfs(int x){  //深度优先遍历
    vis1[x]=1;
    cout<<x<<" ";
    for(int i=0;i<e[x].size();i++){
        int point=s[e[x][i]].v;
        if(!vis1[point]){
            dfs(point);
        }
    }
}
void bfs(int x){  //广度优先遍历
    queue <int> q;
    q.push(x);
    cout<<x<<" ";
    vis2[x]=1;
    while(!q.empty()){
        int fro=q.front();
        for(int i=0;i<e[fro].size();i++){
            int point=s[e[fro][i]].v;
            if(!vis2[point]){
                q.push(point); 
                cout<<point<<" ";
                vis2[point]=1;
            }
        }
        q.pop();
    }
}
int main(){
    int n,m;  //输入,存边
    cin>>n>>m; 
    for(int i=0;i<m;i++){
        int uu,vv;
        cin>>uu>>vv;
        s.push_back((edge){uu,vv});   
    }
    sort(s.begin(),s.end(),cmp);  //排序
    for(int i=0;i<m;i++)   
        e[s[i].u].push_back(i); 
    dfs(1);   //从1号顶点开始深搜
    cout<<endl;
    bfs(1);   //广搜亦同理
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值