数值分析MATLAB实验(附答案)
文章平均质量分 92
长江大学 计算物理学(数值分析)MATLAB实验(附答案)
Sansel
这个作者很懒,什么都没留下…
展开
-
计算物理学(数值分析)上机实验答案1、误差分析
实验一、误差分析 误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时, 由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。一、实验目的1、通过上机编程,复习巩固以前所学程序设计语言及上机操作指令;2、通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念;3、通过上机计算,了解舍原创 2021-01-04 22:40:33 · 3461 阅读 · 3 评论 -
计算物理学(数值分析)上机实验答案2、插值法
实验二、插值法 插值法是函数逼近的一种重要方法,它是数值积分、微分方程数值解等数值计算的基础与工具,其中多项式插值是最常用和最基本的方法。拉格朗日插值多项式的优点是表达式简单明确,形式对称,便于记忆,它的缺点是如果想要增加插值节点,公式必须整个改变,这就增加了计算工作量。而牛顿插值多项式对此做了改进,当增加一个节点时只需在原牛顿插值多项式基础上增加一项,此时原有的项无需改变,从而达到节省计算次数、节约存储单元、应用较少节点达到应有精度的目的。一、实验目的1、理解插值的基本概念,掌握各种插值方法原创 2021-01-04 22:42:28 · 1677 阅读 · 1 评论 -
计算物理学(数值分析)上机实验答案3、数据拟合法
实验三、数据拟合法 曲线拟合的最小二乘法是计算机数据处理的重要内容,也是函数逼近的另一种重要方法,它在工程技术中有着广泛的应用。对实际问题而言,拟合曲线的选择是一个极其重要而又比较困难的问题,必要时可由草图观察选取几种不同类型的拟合曲线,再以其偏差小者为优,经检验后再决定最后的取舍。一、实验目的1、理解数据拟合的基本概念、基本方法;2、掌握最小二乘法的基本原理,并会通过计算机解决实际问题;3、了解超定方程组的最小二乘解法。二、算法实例例 3.1 给出一组数据点(xi,yi)( x原创 2021-01-04 22:43:07 · 968 阅读 · 0 评论 -
计算物理学(数值分析)上机实验答案4、数值积分和数值微分
实验四 数值积分和数值微分 在实际问题中我们常常需要计算定积分。但在很多情况下,并不能利用牛顿-莱布尼兹公式方便地计算函数的定积分,因此,有必要研究定积分的数值计算问题。牛顿-科特斯公式是在等距节点情形下的插值型求积公式,其简单情形如梯形公式、抛物线公式等。复化求积公式是改善求积公式精度的一种行之有效的方法,特别是复化梯形公式、复化抛物线公式,使用方便,在实际计算中常常使用。龙贝格求积公式是在区间逐次分半过程中,对用梯形法所得的近似值进行多级"修正",而获得的准确程度较高的求积分近似值的一种方法。当然原创 2021-01-04 22:44:04 · 1420 阅读 · 0 评论 -
计算物理学(数值分析)上机实验答案5、常微分方程初值问题的数值解法
实验五、常微分方程初值问题的数值解法 常微分方程的求解问题在实践中经常遇到,因此研究常微分方程的数值解法就很有必要。欧拉方法是最简单、最基本的方法,利用差商代替微商,就可得到一系列欧拉公式。这些公式形式简洁,易于编程计算,但精度较低,可方便用于精度要求不高的近似计算。龙格-库塔方法是利用区间上多个点的斜率值的加权平均的思想,得出的高精度的计算公式。特别是四阶龙格-库塔公式,易于编程计算,精度较高,是常用的工程计算方法。线性多步方法是在用插值多项式代替被积函数的基础上构造的,它可利用前面若干步计算结果的原创 2021-01-04 22:44:54 · 1073 阅读 · 0 评论 -
计算物理学(数值分析)上机实验答案6、非线性方程求根
实验六、非线性方程求根 在科学研究与工程技术中常会遇到求解非线性方程的问题。二分法简单易行, 但收敛较慢,仅有线性收敛速度。而且该方法不能用于求偶数重根或复根,但可 以用来确定迭代法的初始值。牛顿法是方程求根中常用的一种迭代方法,它除了 具有简单迭代法的优点外,还具有二阶收敛速度(在单根邻近处)的特点,但牛 顿法对初始值选取比较苛刻(必须充分靠近方程的根),否则牛顿法可能不收敛。 弦截法是牛顿法的一种修改,虽然比牛顿法收敛慢,但因它不需计算函数的导数, 故有时宁可用弦截法而不用牛顿法,弦截法也要求初始原创 2021-01-04 22:45:37 · 1002 阅读 · 0 评论 -
计算物理学(数值分析)上机实验答案7、解线性方程组的直接法
实验七、解线性方程组的直接法 解线性方程组的直接法是指经过有限步运算后能求得方程组精确解的方法。但由于实际计算中舍入误差是客观存在的,因而使用这类方法也只能得到近似解。目前较实用的直接法是古老的高斯消去法的变形,即主元素消去法及矩阵的三角 分解法。引进选主元的技巧是为了控制计算过程中舍入误差的增长,减少舍入误 差的影响。一般说来,列主元消去法及列主元三角分解法是数值稳定的算法,它 具有精确度较高、计算量不大和算法组织容易等优点,是目前计算机上解中、小 型稠密矩阵方程组可靠而有效的常用方法。一、实验原创 2021-01-04 22:46:13 · 913 阅读 · 0 评论 -
计算物理学(数值分析)上机实验答案8、解线性方程组的迭代法
实验八、解线性方程组的迭代法 解线性方程组的迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,即是从一个初始向量 x(0) 出发,按照一定的迭代格式产生一个向量序列{x (k ) },使其收敛到方程组 Ax = b 的解。迭代法的优点是所需计算机存储单元少,程序设计简单,原始系数矩阵在计算过程中始终不变等。但迭代法存在收敛性及收敛速度问题。迭代法是解大型稀疏矩阵方程组的重要方法。一、实验目的1、熟悉迭代法的有关理论和方法;2、会编制雅可比迭代法、高斯-塞德尔迭代法的程序;3、注意所用原创 2021-01-04 22:46:47 · 922 阅读 · 0 评论