算法
关在家
这个作者很懒,什么都没留下…
展开
-
图论聚类
简介图论聚类方法最早是由Zahn提出的,又称作最大(小)支撑聚类算法。图论聚类要建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边或者是弧对应于最小数据之间的相似性度量。因此,每个最小处理单元之间都会有一个度量的表达,这就确保数据局部特性比较易于处理。图论聚类法是以样本数据的局域链接特征作为聚类的主要信息源,因而其优点是易于处理局部数据的特性。图论聚类思想 图论分析中,把待分类的...原创 2018-07-13 22:18:28 · 7192 阅读 · 0 评论 -
硬C均值聚类
简介 硬C-均值(HCM)是一种典型的无监督学习算法,主要将相似的样本自动的归为一类,事先确定好常数K,常数K意味着最终聚类的类别个数。通过计算每个样本到质心之间的相似度,将样本归到相似的类中。在分类过程中每次都要计算所有样本到质心的距离,在大规模数据上,该算法的收敛速度比较慢。思想硬聚类分析的目标如下所示:式子中,dik表示第i类中的样本xk与第i类样本之间的失真度,经常用两个矢量间的距...原创 2018-07-13 22:21:19 · 3762 阅读 · 0 评论 -
atan与atan2在求角度时的差别
atan2(a,b)是4象限反正切,它的取值不仅取决于正切值a/b,还取决于点 (b, a) 落入哪个象限: 当点(b, a) 落入第一象限时,atan2(a,b)的范围是 0 ~ pi/2; 当点(b, a) 落入第二象限时,atan2(a,b)的范围是 pi/2 ~ pi; 当点(b, a) 落入第三象限时,atan2(a,b)的范围是 -pi~-pi/...原创 2018-09-04 23:05:17 · 6480 阅读 · 0 评论