- 博客(5)
- 收藏
- 关注
原创 直线和面的方程总结
一、直线直线方程方程名称形式说明一般式ax+by+c=0优点:可以表示平面上的任意一条直线缺点:要确定的常数较多斜截式y=kx+b优点:只需要斜率和截距缺点:不能表示垂直x轴的直线x=a点斜式y-y0=k(x-x0)优点:只需要一个点和斜率缺点:不能表示垂直x轴的直线x=a两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)优点:只需要2个点缺点:不能表示两点x1=x2或y1=y2时的...
2018-03-09 23:28:37
2222
转载 Python and or 运算符
注意:and or 是python特有的短路运算符1. 表达式从左至右运算,若 or 的左侧逻辑值为 True ,则短路 or 后所有的表达式(不管是 and 还是 or),直接输出 or 左侧表达式 。2. 表达式从左至右运算,若 and 的左侧逻辑值为 False ,则短路其后所有 and 表达式,直到有 or 出现,输出 and 左侧表达式到 or 的左侧,参与接下来的逻辑运算。3. 若 o...
2018-02-12 00:29:31
1376
原创 模型效果衡量标准
True Positive (真正, TP) 被模型预测为正样本,是真的判断正确。所以就是正样本,也称作正的数。True Negative(真负 , TN)被模型判断为负样本,是真的判断正确。所以就是负样本,也称作负的数。False Positive (假正, FP)被模型判断为正样本,是假的判断错误。所以应该是负样本,也称作误报数。False Negative(假负 , FN)被模型判断为负...
2018-01-21 20:35:43
1945
转载 数据的标准化(归一化)
数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。 其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上,常见的数据归一化的方法有: min-max标准化(Min-max normalization)
2018-01-21 00:40:17
437
原创 numpy.newaxis —— 新增纬度
import numpy as np In [30]:#np.newaxis多用于防止取出一行或列后数据降维 a = np.arange(6).reshape(2,3); a Out[30]:array([[0, 1, 2], [3, 4, 5]])In [31]:# np.newaxis加在哪个位置,就能在shape里看到相应位置增加了一个纬度 c = a[:, np.newaxi
2018-01-18 20:00:21
451
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人