自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(51)
  • 收藏
  • 关注

原创 现代数据栈MDS应用落地介绍—Bloom AI数据交付平台,实时AI驱动业务

现代数据栈MDS的出现使得中小企业低成本获得大数据处理能力成为可能,技术的进步使得各种基于MDS的大数据应用如雨后春笋般涌现,不同于国内的数据中台更多强调数据处理技术,MDS注重落地和最后一公里的大数据应用。客户在 Salesforce 中捕获客户/潜在客户的互动,而 Bloom AI 平台为客户团队提供了主题分析、视觉洞察和智能警报。Bloom AI认为业务团队的当前商业智能(BI)流程是分散的、复杂的和技术性的。例如,对定价的严重负面反馈、对全球战略客户的高满意度、新功能的趋势等。

2023-03-22 17:47:32 97

原创 现代数据栈MDS应用落地介绍—ActionIQ智能营销系统

现代数据栈MDS的出现使得中小企业低成本获得大数据处理能力成为可能,技术的进步使得各种基于MDS的大数据应用如雨后春笋般涌现,不同于国内的数据中台概念,MDS注重落地和最后一公里的大数据应用。随着客户隐私和数据保护的增加,作为营销人员和组织,我们如何使我们的业务面向未来,并考虑正确的技术堆栈,以帮助我们保护面临风险的收入,更重要的是,开始考虑如何创造更无缝的客户体验来推动增长?在遵守隐私法规的情况下,跨您选择的第一、第二和第三方来源管理和解析匿名和已知客户的身份。

2023-03-21 17:45:22 166

原创 现代数据栈MDS应用落地介绍—Clearbit营销数据激活平台

现代数据栈MDS的出现使得中小企业低成本获得大数据处理能力成为可能,技术的进步使得各种基于MDS的大数据应用如雨后春笋般涌现,最后一公里的大数据应用在企业的普及,反过来也促使MDS技术平台快速发展。额外的表单字段通常意味着更少的合格潜在客户。获取公司关心的每家公司和联系人的更全面背景信息,以推动大规模洞察、转化和制胜。一致的上下文可让您实时评分和路由潜在客户,以便您可以告别不适合、错误路由的潜在客户和手动排序。使用您的 CRM 数据、网站数据和 100+ 公司、技术和员工属性,通过精确的受众推动更多管道。

2023-03-20 17:25:51 171

原创 现代数据栈MDS应用落地介绍—DataChannel数字营销分析

DataChannel公司推出的数字化营销和分析产品,让营销团队能够在需要时快速访问来自所有广告平台和营销自动化工具的新数据。通过与所有关键营销平台的集成,获取数据变得轻而易举。随时随地构建报告和仪表板。使用高质量数据超个性化您的广告投放,跨营销平台运行超个性化的营销活动。在一个统一平台管理您的细分和受众。现代数据栈MDS的出现使得中小企业低成本获得大数据处理能力成为可能,技术的进步使得各种基于MDS的大数据应用如雨后春笋般涌现,最后一公里的大数据应用在企业的普及,反过来也促使MDS技术平台快速发展。

2023-03-17 17:22:37 2

原创 现代数据栈MDS的6个趋势

他说,在IT运营管理领域,这涉及分析数据,包括指标,事件,日志,拓扑,事件和更改,并且需要开放的平台,并且可以集成来自无数工具和技术的数据,并补充说,堆栈还需要支持混合客户来自本地数据中心基础设施和应用程序以及多个云资产的数据。“人们,普通商业用户,使用AI / ML做非凡事情的方式,将改变未来企业的运营方式,”他说,并补充说谷歌正在寻找进一步民主化人工智能和机器学习的方法,以便那些没有数据背景的人可以通过简单的电子表格访问它。我们在谷歌有备份,在微软有其他备份,这种互连正在变得正常,“齐马说。

2023-03-16 17:32:24 203

原创 现代数据栈MDS兴起

数据仓库曾经是数据团队的巨大瓶颈。这就是您的数据来源:它可以是您的生产数据库(例如PostgreSQL),Web服务器的日志,或者第三方应用程序,如Stripe,Zendesk或您正在使用的任何其他产品。例如,在传统的数据堆栈中,想要访问过产品某个区域的客户列表的客户经理需要友好的工程师或分析师的帮助来为他们“提取”数据。通常,这是作为技术和服务的列表共享的,但是给定堆栈背后的工作和理论比简单格式所允许的要多方面得多。在成熟的数据堆栈中,它是通常是数据仓库,但可能只是一个数据库的只读副本在早期阶段的公司。

2023-03-15 17:57:22 189

原创 DBT是什么

仅使用 SQL 语句或 Python 数据帧编写业务逻辑,返回所需的数据集,dbt 负责select物化.构建可重用或模块化的数据模型,这些数据模型可以在后续工作中引用,而不是从每次分析的原始数据开始。DBT 针对您的数据平台编译并运行您的分析代码,使您和您的团队能够在指标、见解和业务定义的单一事实来源上进行协作。作为 dbt 用户,您的主要关注点将是编写反映核心业务逻辑的模型(即选择查询)——无需编写样板代码来创建表和视图,也无需定义模型的执行顺序。通常,数据源中的记录是可变的,因为它们会随时间而变化。

2023-03-14 17:39:21 151

原创 现代数据堆栈MDS有什么现代之处

设计一个好的MDS,让你的员工做他们的工作,回报将是无价的。为了保持竞争优势,组织需要能够在正确的时间采取行动的数据,并且足够灵活地适应变化。随着网络安全威胁、负责任的 AI 以及数据法规的增加,在没有考虑数据治理的情况下构建的系统是每个 CIO 的噩梦。需要注意的重要一点是,尽管没有任何奶油,但最终结果是你仍然有一个可以吃的蛋糕。例如,Metabase是一个可视化工具,不需要SQL知识来构建,也不需要BI专家的帮助来使用。这种方法的问题在于,MDS 现在是围绕工具构建的,而不是为用户构建的。

2023-03-13 17:11:55 82

原创 Metabase和Tableau、QlikView差异

Metabase 是一个强大而且成本效益高的商业智能工具,具有易于使用、灵活、支持多个数据源、自定义报告和仪表盘、多级问题、自定义问题、共享数据集和仪表盘、数据驱动的提醒和电子邮件通知等功能。然而,对于处理更大量级和更复杂的数据集以及进行更准确的数据预测和分析,Tableau 和 QlikView 可能更加适合。除了基本的数据查询和可视化功能,Metabase 还提供了一些高级功能,例如多级问题、自定义问题、共享数据集和仪表盘、数据驱动的提醒和电子邮件通知等。

2023-03-06 18:13:51 3

原创 配置Airbyte资源限制

如果您连接(管道)的url是http://localhost:8000/workspaces/92ad8c0e-d204-4bb4-9c9e-30fe25614eee/connections/5432b428-b04a-4562-a12b-21c7b9e8b63a/status,那么连接(管道) id 就是5432b428-b04a-4562-a12b-21c7b9e8b63a`替换 id-from-step-1 为上一步查询中获取到id,然后替换资源限制的值为想要限制的值,然后执行query。

2023-03-03 17:22:00 318

原创 配置 AIRBYTE 工作数据库

此外,使用云托管的Postgres实例(如AWS的RDS,GCP的Cloud SQL),您将得到更细粒度的备份和实例大小调整。#外部数据库的用户名 DATABASE_USER=postgres #外部数据库的密码 DATABASE_PASSWORD=password #外部数据库的 ip 或者域名 DATABASE_HOST=host.docker.internal #外部数据库的端口 DATABASE_PORT=3000 #外部数据库的 db 名称 DATABASE_DB=postgres。

2023-03-02 18:02:33 243

原创 Docker部署Airbyte

部署完成,浏览器打开airbyte,访问地址为http://server-ip:8000。部署完成,浏览器打开airbyte,访问地址为http://server-ip:8000。(可选操作)按需修改安装目录下的.env文件,这里可以修改登录用户(BASIC_AUTH_USERNAME)和密码(BASIC_AUTH_PASSWORD)vim .env#拉起服务(第一次拉起的时候,由于拉取的镜像比较多,会比较慢)#拉起服务(第一次拉起的时候,由于拉取的镜像比较多,会比较慢)

2023-02-28 17:47:24 253 1

原创 Airbyte的同步复制模式

在某些复制模式下,这是必需的,用于确保对源系统中单个记录的多个更新将正确应用于目标系统中的单个记录。在增量复制的上下文中,可以将游标视为指向源数据集的指针,该指针用于跟踪从该源发送到目标的最新记录。在每次同步运行中,都会对源执行一个查询以选择要复制的记录,并且此查询被构造为包含游标,以便仅返回比游标更新(即以前未复制)的记录。对于 CDC 复制,不需要指定游标,因为事务日志中的时间戳和/或序列号(用作 CDC 复制的源)具有相同的用途。只有自上次同步运行以来在源系统中插入或更新的记录才会发送到目标。

2023-02-24 18:26:23 485

原创 Airbyte架构

Config API:Airbyte 的主控制平面。Airbyte 中的所有操作,例如创建源、目标、连接、管理配置等。从 API 配置和调用。Scheduler:调度程序从 API 获取工作请求,并将其发送到临时服务进行并行化。作为一款技术复杂的数据集成管道,Airbyte的架构模式非常清晰明了。UI:一个易于使用的图形界面,用于与Airbyte API进行交互。Scheduler Store:存储调度程序簿记的状态和作业信息。WebApp Server:处理 UI 和 API 之间的连接。

2023-02-23 17:57:51 27

原创 Airbyte入门

您可以从一个非常小的实例开始,但根据您的 Airbyte 使用情况,如果不截断作业历史记录,作业数据库可能会增长并需要更多存储空间。系统将要求您输入用户名和密码,默认用户名和密码是 airbyte 和password,部署到服务器后,请务必在.env文件中更改默认用户和密码。有关 Airbyte 使用的内部业务流程协调程序的数据,http://Temporal.io(任务、工作流数据、事件和可见性数据)。请注意,源(或目标)连接器中的实际数据永远不会传输或保留在此内部数据库中。连接器可以用任何语言编写。

2023-02-22 17:42:30 16

原创 Airbyte支持的数据源类型

Airbyte能支持的常用软件非常多:如抖音、Wordpress、Salesforce、Metabase、Netsuite、Peoplesoft、SAP Business One、Shopify、Zoom、Docker hub、Github、GitLab、Jira、MeiliSearch等。Airbyte支持的数据类型丰富,全部类型详见官网。与其它软件API集成。

2023-02-21 18:05:17 19

原创 Metabase学习教程:权限-6

这是一个很大的设置。如果我们回到管理员的窗口People,我们可以看到图标,显示谁的帐户来自LDAP,而不是由Metabase管理。如果我们点击编辑映射和创建映射,我们可以填写在LDAP中标识组的可分辨名称(在本例中,是前面创建的Human Resources组的DN)。首先,我们点击齿轮图标,然后选择管理员设置>People>组然后选择创建组我们称我们的团队为“Human Resources”,但我们不会的在Metabase中添加任何人:我们将依赖LDAP来管理成员资格。此时,人们可以通过LDAP登录。

2022-12-09 17:50:42 20

原创 Metabase学习教程:权限-2

使用集合权限设置具有权限的集合,以帮助用户组织和共享与其相关的工作。集合保持问题,仪表板,和模型有条理,容易找到。将集合视为存储我们工作的文件夹是很有帮助的。集合权限授予一群人访问:查看或编辑保存在集合中的问题、仪表板或模型。编辑集合详细信息,例如集合的名称或保存位置。在本教程中,我们将为一家拥有名为Canoes和Sailboats的团队的公司创建集合,并设置收集权限,以便:公司中的每个人都可以查看但不能编辑保存在公司顶层集合中的工作(在Metabase中,它被称为我们的分析-您可以将其视为根目录或

2022-12-07 17:40:15 18

原创 Metabase学习教程:数据分析-1

此时,您将使用事件(如app open,button clicked)来检测应用程序,根据需要装饰数据(比如向事件添加其他相关细节,比如用户会话细节),然后将清理后的数据转储到廉价存储中(如AWS的)S3(简单存储服务),通常采用如下格式镶木地板). 这个对象存储就是你的数据湖。相反,分析数据库倾向于使用列式存储,将所有的名称存储在一起,最后登录的所有时间都存储在一起,等等很简单,因为数据库可以忽略数据库中除出生日期列之外的所有数据。通过减少数据库需要扫描的数据量,列式存储显著提高了分析查询的性能。

2022-12-02 17:45:22 29

原创 Metabase学习教程:模型-1

Metabase中的模型创建模型,为人们提供新问题的良好起始数据集。为了让非技术人员更容易地询问有关您的数据的问题,您可以做的最有价值的事情是将您的数据放入一个使提问更直观的形状。数据往往很混乱,尤其是对于初创企业。就算不凌乱,它可能是高度标准化数据针对事务而不是分析进行优化。这意味着您可以拥有一个数据库,其中客户的数据分布在大量的表中,这使得那些还不熟悉数据库的人很难找到他们要查找的信息(假设他们甚至知道).模型作为构建块为了使您的数据更直观,您可以创建问题,在查询生成器或者SQL编辑器,以在Metaba

2022-12-01 17:46:39 11

原创 Metabase学习教程:仪表盘-1

对于较大的仪表盘,可以使用文本卡为仪表盘的各个部分添加标题。仪表盘组和颜色代码相关的卡片(绿色代表订单数据,蓝色代表用户数据,紫色代表产品数据),让观众了解我们当前的每周表现与前三个月相比如何(因此不需要加载全年的数据),包括趋势线和目标,以及交叉滤波,以便查看者可以单击条形图中的类别以更新类别筛选器。根据听众所能做出的决定,调整你所包含的问题行为例如,如果您正在为团队构建BI仪表盘,请与他们讨论他们每天/每周/每月需要做出的决策,并包括捕获他们所采取的行动以及这些行动的效果(或目标)的问题。

2022-11-28 17:48:54 59

原创 Metabase学习教程:提问-5

但是,让我们进一步添加另一个过滤器之后从数据中取出小部件的摘要步骤。当我们返回到笔记本编辑器并单击添加筛选器按钮在编辑器的底部,它显示了三列在汇总数据中:Created At, Category和Count点击几下,我们就可以创建一个过滤器,删除类别为widget的行(图3)。目前我们想知道所有的产品类别,所以我们不需要过滤这些数据,但是我们需要对它进行分组和汇总,以便按类别计算每周的总数(图1)。我们的可视化现在正是我们想要的:每周平均售出的dooickey、gadget和gizmo的数量(图6)。

2022-11-22 17:43:34 16

原创 Metabase学习教程:提问-1

您可以单击图表上的任何位置执行数据透视,Metabase将生成仪表板对数据充满了不同的疑问。您可以选择将数据透视保存为仪表板,然后您可以根据自己的喜好编辑它,方法是删除不相关的问题,或添加新的问题或文本框来填充你想讲的故事。用SQL编写一个问题,将所需的起始数据集合在一起,就像创建一个供用户查询的视图一样。查询生成器非常强大。也就是说,如果你添加了一个定制的目的地,用户将无法对问题的数据进行切分。在此基础上,您可以让用户使用模型作为向查询生成器提问的起点,也可以基于该模型创建查询生成器问题,供用户使用。

2022-11-18 17:52:38 30

转载 【无标题】

Metabase有一个许多它的工具箱中的工具(我们不能在这里涵盖所有的工具),但是即使是经验丰富的Metabase用户也会从它的特性集中受益-特别是因为我们在常规剪辑中添加了主要的新功能。另外,不懂SQL的人可以复制您的问题,并将其作为另一个问题的起点。如果您发现您反复使用同一个保存的问题作为新问题的起始数据,您可能需要将保存的问题转换为一个模型,这样可以添加诸如列描述和列类型之类的元数据。与查询生成器问题类似,您可以使用模型的结果或保存的问题作为新问题的出发点,就像你对一个表或视图。

2022-11-15 18:10:23 15

转载 Metabase学习教程:入门-4

您不必编写这些结果的自定义视图,也不必强迫非技术用户与Matlab交互,而是可以使用Metabase作为一种简单、轻量级的方法,将这些结果发布给公司的其他人员。给人们发送一个指向仪表板的链接,将仪表板嵌入你的应用程序中,或者简单地截取Metabase图表的屏幕截图并将其粘贴在幻灯片上:不管怎样都可以。在一个项目的开始,你可能不知道你想要衡量什么,所以建立分析的想法可能显得为时过早。当人们问你问题时,保存查询并给他们账户到Metabase所以他们可以引用它,或者把它作为另一个问题的起点。

2022-11-14 17:53:00 22

转载 Metabase学习教程:入门-2

如果您的Metabase中设置了email或Slack,我们可以单击设置按钮在我们的面积图下面打开目标线,然后在切换开关下方的框中输入值“500”,告诉Metabase,只要在一个月内有超过500个订单,我们就会收到通知。有时候,你会发现需要一次又一次地提出某些,无论是运行定期报告,查找某个重要用户群体的信息,还是仅仅为公司的其他人回答同样的问题。当你完成工作时别忘了点击保存,你可以在上面保存你的工作。Metabase将会尝试给查询一个有意义的名字,但你可以自己命名,这将有助于你和其他人以后找到你的查询。

2022-11-10 17:52:42 36

转载 Metabase学习教程:入门-1

您可以通过筛选和汇总查询的结果,将这些探索保存为新查询,并将查询添加到仪表板但是我们已经超越了自己;Metabase查询以及该查询结果以及这些结果的可视化和格式化(即使该可视化只是一个表格). 查询有标题、ID和唯一的URL,您可以复制并与他人共享。在过滤器,我们点击添加过滤器以缩小答案范围按钮,我们将选择小计作为柱在下拉菜单中,将“等于”更改为“大于”,在输入字段中输入40,然后单击添加筛选器.如果我们想以表格的形式检查结果,可以单击页面底部中心的小开关,从图表切换到数据表,然后再切换回来。

2022-11-08 17:29:59 305

转载 Redash和Metabase深度比较之六:预警和订阅

Redash和Metabase都有基于结果集变化的预警,首先要做一个定期查询,当查询的结果集满足给定条件时,可以触发预警。Metabase对仪表盘提供定时订阅的功能,方便通过邮件定期订阅指定报表。Redash无类似功能。Metabase中文社区:metabasecn.net 有惊喜:提供社区自行汉化开源版,精准翻译。Redash中文官网: dazdata.com。

2022-11-07 17:00:09 14

原创 强强联手,达之云签约西北工业大学云计算及其应用技术国家地方联合工程研究中心

西北工业大学(简称西工大)坐落于陕西西安,是一所以发展航空、航天、航海等领域人才培养和科学研究为特色的多科性、研究型、开放式大学,是国家“一流大学”建设高校(A类),隶属于工业和信息化部。达之云公司和研究中心具有较为广泛的合作基础,双方愿意在平等互利、友好协商的基础上开展业务合作、项目合作,并共同致力于云计算和大数据方面开展深度合作。在共同开发大数据市场的基础上,加快构建坚实的合作平台,使合作取得实实在在的成果,为客户提供个性化服务、本地特性研发等领域展开合作,并将合作关系全面推向更深的层次和更广的领域。

2022-11-03 09:52:51 418

原创 商业智能耀眼明星产品——达之云 Redash中文商业版

该平台后台技术钻取、治理和分析能力强,前台展示灵活易用。该平台扩展性强,拥有成本低,广泛应用于政府企事业单位,如 党政部门、医院、学校、商超、商城、制造业、电力、物流和各类园区等,快速赢得良好的用户口碑,被越来越多的用户选择。第三层,数据源层 - 即数据层,各个业务系统底层数据库的数据通过 ETL 的方式抽取到 BI 的数据仓库中完成 ETL 过程,建模分析等等,最终支撑到前端的可视化分析展现。第一层,可视化分析展现层 - 即需求层,代表用户的需求,用户要看什么,要分析什么就在这一层进行展现。

2022-10-28 17:12:26 63

原创 Redash和Metabase深度比较之一:概述

Metabase是随着数据中的异军突起,大量的主题/指标宽表的涌现,对数据可视化提出新的应用场景:即传统的由技术人员制作数据报表,分配给业务人员查看模式已不能适应要求,原因之一是宽表数据经过中台处理后,其技术性成分占比较小,宽表数据绝大部分直白易懂,相较于关系型数据库,业务人员直接使用宽表的可能性大大提高。Redash是最具开发性的BI软件,其强大的前后端自定义代码能力,无需专业开发人员和二次开发,实施人员即可引入任意三方js库,实现任意效果的可视化视图;可以说Redash是BI实施人员最爱的利器。

2022-10-27 14:09:07 73

原创 选择可视化平台需要关注产品哪些特点?

企业最好能同时准备多种数据可视化方案, 不要认为当前没有用,每一种可视化的方案都能发挥其最大的作用。可视化工具只具备实用这一特点肯定是不完美的,一张美观好看的数据报表对公司的业务发展以及决策也能带来巨大的贡献,因此一款不错的可视化工具也同样需要兼备多样化主题、丰富的图表以及各种主题风格使得数据可视化报表更加直观、美观与创新。总而言之,要想使数据变得好看直观很简单,不需要你去搞平面设计,也不需要你对数据有多么专业的分析能力,只需要找到一款值得相信的可视化工具就能轻松帮助你完成数据可视化报表。

2022-10-21 17:55:05 21

原创 达之云商业智能BI助力智能商业腾飞

第二,商业智能平台BI可以将企业不同业务系统(ERP、CRM、OA)中的数据打通并进行有效的整合,包括了ETL 过程、取数、业务逻辑规则向数据规则的转变、数据仓库建模等。智能商业平台包括以下三点:一是在线化,联网。这些不同领域的企业把商业智能平台BI的口碑和影响力传播的越来越广,让很多对商业智能平台BI不太了解的企业也开始通过商业智能平台BI来提升业务、管理和决策能力,但不了解商业智能平台BI也让这些企业无法全面发挥商业智能BI的作用,所以今天重新讲下到底什么是商业智能平台BI。

2022-10-19 14:25:30 21

原创 Dazdata BI率先集成MQTT.js,实现Iot设备适时流数据可视化

满足上述要求才能实现Iot设备适时流数据可视化。Dazdata BI率先集成 MQTT.js协议,同时完善支持可视化组件流数据支持,打开了BI软件切入工业设备监控的应用领域。1、MQTT是目前Iot设备数据采集的基础协议,要实现物联网设备数据采集必须接入MQTT协议。2、同时要实现浏览器前端能够显示Iot设备适时流数据,同时改进前端可视化组件的流数据接入展示。//可视化组件显示刷新。//mqtt接收数据。//创建mqtt订阅连接。//mqtt消息响应。

2022-10-12 17:00:51 30

原创 Redash大屏视图样式(上)

大屏组合千变万化,绚丽多姿,但从本质上来讲,80%都是由这些基本视图组合而成,下面一起来了解一下:

2022-08-03 11:49:37 30

原创 Redash 案例之——党建

今天给大家分析一个用Redash做的案例,这是一个红色主题案例,主要展现某集团党建数据。主页分有大体分为左右结构,最上面是页面的标注建党多少年的信息。

2022-07-20 15:26:09 52

原创 Redash BI报表,你听过吗?

现代社会,随着数据时代的发展,大量的BI工具涌现,主要原因是企业越来越重视对于数据的有效利用,需要通过BI工具,辅助分析业务数据,从而实现业务推动决策。本文是对Redash工具进行全面分析,这也是近两年在市场比较火热的,也相对比较成熟的BI工具,通过介绍一些主要功能,为企业或者个人选型提供一个参考。Redash是一款开源BI工具,可以使用其进行数据可视化。其使用的交互方式不是限于传统的拖拽式,也可以是搜索式、自定义开发等多种实现模式,是否有代码基础都不影响对其使用,完成美观大气的报表设计。同时Redash支

2022-07-07 17:11:57 42

原创 天池机器学习笔记——task01

逻辑回归是分类模型逻辑回归特点:模型简单和模型的可解释性强。逻辑回归模型的优劣势:优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低; 缺点:容易欠拟合,分类精度可能不高分析流程:Part1 Demo实践 Step1:库函数导入 Step2:模型训练 Step3:模型参数查看 Step4:数据和模型可视化 Step5:模型预测 Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践 Step1:库函数导入

2022-05-25 15:31:44 37

原创 天池slq笔记-task06

数据准备创建数据表脚本:http://tianchi-media.oss-cn-beijing.aliyuncs.com/dragonball/SQL/create_table.sql​tianchi-media.oss-cn-beijing.aliyuncs.com/dragonball/SQL/create_table.sql插入数据脚本:(data数据下的_macosx忽略,没用)http://tianchi-media.oss-cn-beijing.aliyuncs.com/dra

2022-05-25 10:56:14 66 1

原创 天池SQL学习笔记——task05

窗口函数也称为OLAP函数。OLAP 是OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。窗口函数的通用形式:<窗口函数> OVER ([PARTITION BY <列名>] ORDER BY <排序用列名>) []中的内容可以省略。窗口函数最关键的是搞明白关键字PARTITON BY*和ORDER BY******的作用。PARTITON BY是用来分组,

2022-05-16 15:54:51 25

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除