背景
随着AI技术的发展,人们对于信息检索的要求越来越高,传统的问答系统往往只能给出大模型训练的数据,无法满足用户对于特定领域问答的需求。此时RAG(Retrieval-Augmented Generation)检索增强生成技术应运而生,为传统问答系统增加了更智能的功能,使其变得更加智能化和个性化。RAG在LLM本就强大的功能基础上,能扩展特定领域或组织的内部知识库,所有这些都无需重新训练模型。这是一种经济高效地改进 LLM 输出的方法。
RAG(Retrieval-Augmented Generation)由Facebook AI提出,是一种结合了检索和生成的自然语言处理模型。它可以在生成文本的过程中引入外部知识,并且可以根据用户的查询来检索相关的信息,从而生成更加准确和相关的文本。简单来说RAG是引入外部知识库数据,来改善生成模型的响应结果。
原理
RAG模型由检索技术和生成技术组成,首先利用检索技术从大规模语料库中获取相关信息,然后再利用生成技术将这些信息转化为自然语言文本。这种结合检索和生成的方式,使得RAG模型能够充分利用大规模语料库中的知识和信息,从而提高生成文本的质量和多样性。
优点
与传统的生成模型相比,RAG模型具有以下几个优点:
1. 提高了文本生成的相关性:通过引入外部知识库,RAG模型可以更好地理解用户的意图,并生成更加与用户需求相关的文本。
2. 增强了文本生成的多样性:RAG模型可以根据不同的查询和检索结果生成多样性的文本,满足用户不同的需求。
3. 增强了模型的可解释性:由于RAG模型在生成过程中引入了外部知识,因此生成的