最近学习编程珠玑,看到随机取样算法,很不错,这里也整理下:
首先来看一个简单的取样算法,这里假定在不考虑重复的情况下,从1-N之间取出M个数来
void simpleRand(int m, int n)
{
for (int i = 0; i < m; i++)
cout << rand() % n + 1 << " ";
cout << endl;
}
这样子的话,很容易得到如下的输出:
这样子的话,倒是适合“石头-剪刀-布”,一类的小游戏
但很多情况下,我们需要的是没有重复的随机数,如何从1-N中取出M个数呢,这里看看如下的伪代码
initialize set S to empty
Size = 0
while Size < M do
T := RandInt(1, N)
if T is not in S then
insert T in S
Size := Size + 1
这个算法,很不错,由于集合存储不同数据,所以最终得到的随机样本中,没有重复数据,见代码
void simpleRand2(int m, int n)
{
set<int> s;
int size = 0;
while (size < m)
{
int t = rand() % n + 1;
if (s.find(t) == s.end())
{
s.insert(t);
size++;
}
}
for (set<int>::iterator i = s.begin(); i != s.end(); ++i)
cout << *i << " ";
cout << endl;
}
这一次,得出的结果已经很不错了
可惜,还是有一个重大问题,如果M = N = 100呢,当Size = 99时,最后一个数,算法只能闭眼瞎猜,直到偶然碰到那个数,这平均需要猜测100个随机数。
好了,不要着急,我们额度改良算法马上就来到了
这里利用递归很容易理解,如果从1-10中选择5个数,那么只需要从1-9中产生一个4个数的样本,然后再加上第五个数即可了:
这里给出伪代码参考了:
function Sample(M, N)
if M = 0 then
return the empty set
else
S := Sample(M - 1, N - 1)
T := RandInt(1, N)
if T is not in S then
insert T in S
else
insert N in S
return S