第一次刷算法题,数据结构和c++都学得不是很好,随手记录一下,见证成长!
暴力解法
// 时间复杂度:O(n^2)// 空间复杂度:O(1)
classSolution {public:
intremoveElement(vector<int>& nums, int val){
int size = nums.size();
for (int i = 0; i < size; i++) {
if (nums[i] == val) { // 发现需要移除的元素,就将数组集体向前移动一位
for (int j = i + 1; j < size; j++) {
nums[j - 1] = nums[j];
}
i--; // 因为下表i以后的数值都向前移动了一位,所以i也向前移动一位
size--; // 此时数组的大小-1
}
}
return size;
}
双指针法
双指针法(快慢指针法):通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。
快指针:寻找新数组的元素,新数组就是不含有目标元素的数组。
慢指针:指向更新新数组下标的位置
// 时间复杂度:O(n)// 空间复杂度:O(1)
classSolution {public:
intremoveElement(vector<int>& nums, int val){
int slowIndex = 0;
for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
if (val != nums[fastIndex]) {
nums[slowIndex++] = nums[fastIndex];
}
}
return slowIndex;
}
};
相关题目推荐
26. 删除有序数组中的重复项 - 力扣(LeetCode)(注意!!!slowIndex=0的数据一定是不重复的!!!)
classSolution
{public:
intremoveDuplicates(vector<int>& nums){
if (nums.empty()) return0; // 别忘记空数组的判断int slowIndex = 0;
for (int fastIndex = 0; fastIndex < (nums.size() - 1); fastIndex++){
if(nums[fastIndex] != nums[fastIndex + 1])
{ // 发现和后一个不相同
nums[++slowIndex] = nums[fastIndex + 1]; //slowIndex = 0 的数据一定是不重复的,所以直接 ++slowIndex
}
}
return slowIndex + 1; //别忘了slowIndex是从0开始的,所以返回slowIndex + 1
}
};
void moveZeroes(vector<int>& nums) {
int j = 0;
for(int i = 0 ; i < nums.size(); i++)
{
if(nums[i] != 0)
{
nums[j] = nums[i];
j++;
}
}
while(j < numsSize)
{
nums[j++] = 0;
}
}
暴力解法:先平方再排序
classSolution {public:
vector<int> sortedSquares(vector<int>& A){
for (int i = 0; i < A.size(); i++) {
A[i] *= A[i];
}
sort(A.begin(), A.end()); // 快速排序return A;
}
};
双指针法
i指向起始位置,j指向终止位置。
定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。
如果A[i] * A[i] < A[j] * A[j] 那么result[k--] = A[j] * A[j]; 。
如果A[i] * A[i] >= A[j] * A[j] 那么result[k--] = A[i] * A[i]; 。
classSolution {public:
vector<int> sortedSquares(vector<int>& A){
int k = A.size() - 1;
vector<int> result(A.size(), 0);
for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j,因为最后要处理两个元素
if (A[i] * A[i] < A[j] * A[j]) {
result[k--] = A[j] * A[j];
j--;
}
else {
result[k--] = A[i] * A[i];
i++;
}
}
return result;
}
};
第一种写法,我们定义 target 是在一个在左闭右闭的区间里,**也就是[left, right] (这个很重要非常重要)**。
区间的定义这就决定了二分法的代码应该如何写,**因为定义target在[left, right]区间,所以有如下两点:**
while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
二分查找步骤:
前提:是已经排好序的数列
循环条件:left<=right
1)为数组初始化下标left=0和right=nums.size()-1;将数列列出来并找到中间值,将中间值与目标值进行比较;
2)若目标值大于中间值,说明要查找的数据在数列的右半段。此时不考虑左半段的数据,更新left = mid+1,对右半段的数据再进行分割,找中间值,循环这一操作,直到target=nums[mid];
3)若目标值小于中间值,说明要查找的数据在数列的左半段。此时不需要考虑右半段的数据,更新right=mid-1,对左半段的数据再进行分割,找中间值,循环这一操作,直到target=nums[mid]。
### 二分法第二种写法
如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。
有如下两点:
while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
// 版本二classSolution {public:
intsearch(vector<int>& nums, int target){
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} elseif (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == targetreturn middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值return-1;
}
};
相关题目推荐
使用二分查找法,但是要注意最后的返回值问题!
classSolution {public:
intsearchInsert(vector<int>& nums, int target){
int n = nums.size();
int left = 0;
int right = n - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} elseif (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == targetreturn middle;
}
}
// 分别处理如下四种情况
// 目标值在数组所有元素之前 [0, -1]
// 目标值等于数组中某一个元素 return middle;
// 目标值插入数组中的位置 [left, right],return right + 1
// 目标值在数组所有元素之后的情况 [left, right],这是右闭区间,所以 return right + 1
return right + 1;
}
};
此题毫无思路,防止溢出mid = left + (right - left)/2;
classSolution{
public int mySqrt(int x) {
if(x==0) {
return0;
}
int left = 1, mid, right = x;
while(left<=right) {
mid = left + (right - left)/2;
if(x/mid < mid) {
right = mid - 1;
} elseif(x/mid > mid) {
left = mid + 1;
} else {
return mid;
}
}
returnright;
}
}