Misha Verbitsky教授对数学专业教学标准的看法

本文概要介绍了从中学到大学阶段的数学与理论物理领域的关键课程内容,包括欧几里得与非欧几何、变换群、线性代数、量子力学原理、集合论、拓扑空间、微积分等核心概念,以及多元微分学、泛函分析、李群李代数等高级理论。此外,还涉及了同调论、上同调理论、微分几何、交换代数、代数几何初步、大数据开发等领域的基础与进阶知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中学:
Euclid与非Euclid几何、变换群、线性分式变换、量子力学原理(Kostrikin和Manin线性代数与几何。)。
群、环、域、线性代数、Galois理论、经典李群、有限群的线性表示、张量代数。
集合论、 Zorn引理、偏序集、Cantor-Berenstein定理、不可数集。
度量空间、拓扑空间、同伦、基本群、同伦等价。
p-adic数、Ostrowski定理。
一元微积分。

大一:
多元微分学、压缩映射与隐函数定理、Riemann与Lebesgue积分、Hilbert空间、Banach空间、线性算子、紧算子、光滑流形、浸没、嵌入、单位分解、横截性、映射度、微分形式、Stokes定理、de Rham上同调、电磁场的Maxwell方程。(Zorich的数学分析、Laurent Schwartz的分析、Kirillov的泛函分析、Wallace,Differential Topology、Milnor,Topology from the Differentiable Viewpoint。)
单复变函数(Cartan的解析函数论初步、Shabat复分析第一卷)
范畴论(Gelfand的同调代数第一章。)
李群李代数(Serre的Lie Groups and Lie Algebra的第一部分。)

大二:
同调论、上同调理论、Poincare对偶、同伦群、纤维丛、谱序列、经典李群与射影空间的上同调。(Fuchs和Fomenko的代数拓扑、Mishchenko的向量丛)
纤维丛、联络、Gauss-Bonnet公式、Euler类、Pontryagin类、Stiefel-Whitney类、陈类。(Milnor示性类。)
微分几何:Levi-Civita联络、曲率、Bianchi等式、Killing场、黎曼流形的该死曲率、Morse理论、主丛。(Milnor的Morse theory、Besse的Einstein manifolds、Novikov的现代几何学。)
交换代数(Atiyah交换代数、LNM21和LNM40)
代数几何初步(Shafarevich的书和GTM52第一章)
李群李代数(Serre的书的第二部分、Hermann Weyl的Invariants of classical groups)、Hopf代数、量子群的定义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值