相关链接:
先安装Tensorflow依赖的编译工具bazel
1.安装bazel前,需先安装JDK8
下载openjdk-8-jre-headless
sudo apt install openjdk-8-jre-headless
下载openjdk-8-jdk-headless
sudo apt install openjdk-8-jdk-headless
配置环境变量
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export JRE_HOME=$JAVA_HOME/jre
验证方式:
java -version
2.安装bazel
echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
sudo apt install curl
curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -
sudo apt-get update
sudo apt-get upgrade bazel
安装tensorflow-gpu
安装NVIDIA步骤
CUDA-9.0,CUDNN-7.05步骤
可以参考官方文档的步骤
1.先下载以下软件包:
sudo apt update
sudo apt install python3-dev python3-pip
sudo pip3 install -U virtualenv # system-wide install
2.创建虚拟环境(推荐)
创建一个新的虚拟环境,方法是选择 Python 解释器并创建一个 ./venv 目录来存放它:
virtualenv --system-site-packages -p python3 ./venv
使用特定于 shell 的命令激活该虚拟环境:
source ./venv/bin/activate
3. 安装 TensorFlow pip 软件包
方法1:官方方法
在不影响主机系统设置的情况下,在虚拟环境中安装软件包。首先升级 pip:
pip install --upgrade pip
下载(注:国内墙的原因,pip速度亲测是非常非常的慢,过段时间就会出现超时错误,使用该方法未成功)
pip install --upgrade tensorflow
方法2:pip下载引用国内镜像源(强烈推荐)
速度爽到飞起
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu
指定版号号:
pip install tensorflow-gpu==2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
方法三:
手动下载安装包并安装
方法四:
下载虚拟环境anaconda,在虚拟环境中下载:
conda install tensorflow-gpu
方法五:
github上下载:
sudo apt-get install git
git clone https://github.com/tensorflow/tensorflow
然后进入下载好的tensorflow目录,运行configure脚本配置环境信息:
./configure
通过bazel来编译pip的安装包,然后通过pip安装
bazel build -c opt --config=cuda//tensorflow/tools/pip_package:build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package/tmp/tensorflow_pkg
sudo pip install/tmp/tensorflow_pkg/tensorflow-1.2.0rc2-cp27-cp27mu-linux_x86_64.whl
第一个命令中 --config=cuda参数为对GPU的支持,如何不需要支持GPU,就不需要这个参数。
4.测试
尝试你的第一个 TensorFlow 程序 :
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print (sess.run(hello))
成功则出现:Hello, TensorFlow!