真实机下ubuntu18.04安装NVIDIA驱动,CUDA-9.0,CUDNN-7.05,tensorflow过程(三)

相关链接:

安装NVIDIA步骤

CUDA-9.0,CUDNN-7.05步骤

先安装Tensorflow依赖的编译工具bazel

1.安装bazel前,需先安装JDK8
下载openjdk-8-jre-headless

sudo apt install openjdk-8-jre-headless

下载openjdk-8-jdk-headless

sudo apt install openjdk-8-jdk-headless

配置环境变量

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export JRE_HOME=$JAVA_HOME/jre

验证方式:

java -version

2.安装bazel

echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
  sudo apt install curl
 curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -
sudo apt-get update 
 sudo apt-get upgrade bazel

安装tensorflow-gpu

安装NVIDIA步骤
CUDA-9.0,CUDNN-7.05步骤
可以参考官方文档的步骤

1.先下载以下软件包:

sudo apt update
sudo apt install python3-dev python3-pip
sudo pip3 install -U virtualenv  # system-wide install

2.创建虚拟环境(推荐)

创建一个新的虚拟环境,方法是选择 Python 解释器并创建一个 ./venv 目录来存放它:

virtualenv --system-site-packages -p python3 ./venv

使用特定于 shell 的命令激活该虚拟环境:

source ./venv/bin/activate  

3. 安装 TensorFlow pip 软件包

方法1:官方方法
在不影响主机系统设置的情况下,在虚拟环境中安装软件包。首先升级 pip:

pip install --upgrade pip

下载(注:国内墙的原因,pip速度亲测是非常非常的慢,过段时间就会出现超时错误,使用该方法未成功)

pip install --upgrade tensorflow

方法2:pip下载引用国内镜像源(强烈推荐)
速度爽到飞起

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu

指定版号号:

 pip install tensorflow-gpu==2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

方法三
手动下载安装包并安装

方法四
下载虚拟环境anaconda,在虚拟环境中下载:

conda install tensorflow-gpu

方法五
github上下载:

 sudo apt-get install git
git clone https://github.com/tensorflow/tensorflow

然后进入下载好的tensorflow目录,运行configure脚本配置环境信息:

./configure

通过bazel来编译pip的安装包,然后通过pip安装

  bazel build -c opt --config=cuda//tensorflow/tools/pip_package:build_pip_package

  bazel-bin/tensorflow/tools/pip_package/build_pip_package/tmp/tensorflow_pkg

  sudo pip install/tmp/tensorflow_pkg/tensorflow-1.2.0rc2-cp27-cp27mu-linux_x86_64.whl

  第一个命令中 --config=cuda参数为对GPU的支持,如何不需要支持GPU,就不需要这个参数。

4.测试

尝试你的第一个 TensorFlow 程序 :

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print (sess.run(hello))

成功则出现:Hello, TensorFlow!

安装NVIDIA步骤
CUDA-9.0,CUDNN-7.05步骤

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值