摘要
图神经网络在图结构数据中取得了很好的效果但是大多数的模型使用的还是叫浅层的结构,当模型层数加深时很容易过平滑。本文基于多视图来聚合更多的信息。我们首先设计两个互补的视图来描述全局结构和节点特征相似性,然后使用注意力策略融合节点表示。最后,通过在不同视图上使用对比学习来学习节点的表示。
引言
GCN是每层聚合一次一阶邻居的信息,通过增加层数迭代聚合邻居信息。但随着网络层数的增加,效果会严重下降。实验发现使用RELU作为激活函数的GCN随着层数的增加效果严重下降而使用其他激活函数图tanh有减缓过平滑的效果但是随着层数增加效果仍在下降。深层的GNN可以聚合高阶邻居的信息但这些信息可能包含噪声,会降低节点的可区分性。因此,现存GNN模型待处理两个问题:
1)如何聚合高阶邻居的特征?
2)如何区分不同邻居的贡献程度?
深度的GNN只处理了第一个问题,GAT等只处理了第二个问题。
为了解决上面两个问题,我们设计了两个新颖的GNN模型叫做MV-CGC和MV-GCN从多个视图中学习节点的表示。多视图表示学习就是为同一目标生成多个视图来学习。我们首先引入两个视图来表示全局关系和节点之间的特征关系作为邻接矩阵的补充。这三个视图可以分别从局部拓扑,全局拓扑和特征相似性的角度更加精确的描述了节点之间的关系。然后使用任何已有GNN模型在该三个视图上学习节点表示。模型可以从全局拓扑和特征相似视图中聚合高阶邻居的特征。然后使用