机器学习
文章平均质量分 74
机器学习
hellosc01
喂,你知道吗,有时候,自由意志就是你能主动选择最小概率的路。
展开
-
LSTM神经网络
目录1 LSTM概述2 同RNN的对比3 LSTM内部三阶段3.1 忘记阶段3.2 选择记忆阶段3.3 输出阶段1 LSTM概述2 同RNN的对比(RNN网络结构图)(LSTM网络结构图)(RNN和LSTM内部结构对比)3 LSTM内部三阶段3.1 忘记阶段3.2 选择记忆阶段3.3 输出阶段...原创 2021-02-23 22:26:23 · 446 阅读 · 0 评论 -
为什么人工神经网络需要非线性激活函数?
1. 我们用人工神经网络来表述输入X与输出Y之间复杂的关系,用数学语言来说,就是用人工神经网络来实现复杂的函数; 2. 如果使用线性激活函数,那么无论神经网络中有多少层,都只是在做线性运算,最后一层得到的结果是输入层的线性组合,而输入层的线性组合,用一层隐藏层就可以表示,也就是说,多层的隐藏层运算后的结果等同于一层的结果,那么这么多隐藏层就没有意义了,还不如去掉。因此,隐藏层的激活函数必须是要非线性的; 3. 非线性激活函数可以使神经网络随意逼近各种复杂函数。原创 2020-11-02 15:27:23 · 1440 阅读 · 0 评论 -
pandas数据处理常用命令
目录读取csv文件读取Excel文件输出为csv文件设置显示全部列设置显示完整行设置显示最大列数为20取消链式赋值警告对index重排序将数据类型从Object转化为正当格式行拼接DataFrame列拼接DataFrame基于共同列alpha的内合并(交集)基于共同列alpha的外合并(并集)基于共同列alpha的左合并基于共同列alpha的右合并基于共同列alpha和beta的内合并,其余类似获取列名(list)获取列名(ndarray)修改列名(一次性全部修改)修改列名(可以部分修改)调整新列到指定位置原创 2020-09-25 17:12:22 · 628 阅读 · 0 评论 -
机器学习最常用的3种激活函数:Sigmoid、Tanh、Relu
目录1 什么是激活函数2 为什么使用激活函数3 常用激活函数1 Sigmoid2 Tanh3 Relu1 什么是激活函数激活函数(Activation Function)在人工神经网络的神经元上运行,负责将神经元的输入映射到输出端。如图,在神经元中,输入的 inputs 通过加权求和后,还被作用了一个函数,这个函数就是激活函数,引入激活函数是为了使神经网络模型具有非线性特性。2 为什么使用激活函数如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这原创 2020-09-03 16:44:23 · 14501 阅读 · 1 评论 -
batch_size、epochs、iterations的区别
batch_size(批大小) 一次训练所选取的样本数epochs(代数) 全部数据被训练的次数iterations(迭代次数) 完成一次epoch所需的batch个数=训练集大小/批大小原创 2020-09-02 15:55:51 · 917 阅读 · 0 评论 -
BP神经网络及其设计的一般原则
目录1 BP神经网络的简单介绍2 BP神经网络设计的一般原则1 BP神经网络的简单介绍20世纪80年代,David Runelhart等人发明了误差反向传播算法(Error Back Propagation Training),简称BP,解决了多层神经网络隐含层连接权值学习问题,并在数学上给出了完整推导,人们把采用这种算法进行误差校正的多层前馈神经网络称为BP神经网络。从结构上讲,BP网络具有输入层、隐藏层和输出层;从本质上讲,BP算法就是以网络误差平方为目标函数、采用梯度下降法来计算目标函数的最小原创 2020-08-26 17:56:53 · 4772 阅读 · 0 评论 -
Python - pandas DataFrame数据的合并与拼接(merge、join、concat)
目录1 Merge方法单列的内连接定义df1定义df2print(df1)print(df2)基于共同列alpha的内连接单列的外连接定义df1定义df2基于共同列alpha的内连接单列的左连接定义df1定义df2基于共同列alpha的左连接单列的右连接定义df1定义df2基于共同列alpha的右连接多列的内连接定义df1定义df2基于共同列alpha和beta的内连接多列的右连接定义df1定义df2基于共同列alpha和beta的右连接基于column和index的右连接定义df1定义df2基于df1的b转载 2020-08-22 23:01:44 · 185465 阅读 · 5 评论 -
Python - pandas DataFrame创建、数据提取(loc、iloc)
目录1 新建一个DataFrame表2 获取列名3 获取指定列或指定行数据4 通过loc获取指定行、列的数据5 通过iloc用数字定位获取指定行、列的数据1 新建一个DataFrame表import numpy as npimport pandas as pddf = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['name','gender','age'])原创 2020-08-21 23:08:07 · 5882 阅读 · 0 评论 -
回归与分类、线性与非线性、监督学习与非监督学习
1 回归与分类1 输出数据的类型不同分类输出的数据类型是离散数据,这类数据在任何两个数据点之间的个数是有限的,例如某年级有十个班,这里班级的数目就是离散数据。回归输出的是连续数据,这类数据在任何两个数据点之间可以细分出无限多个数值。2 目的不同分类算法得到是一个决策面,用于对数据集里的数据进行分类。回归算法得到是一条最优拟合线,这条线可以较好地拟合数据集里的各个点。3 对模型的评估指标不同在分类中,我们我们通常会使用正确率作为为指标,也就是预测结果中分类正确数据占总数据的比例原创 2020-08-15 11:34:16 · 1341 阅读 · 0 评论 -
深度置信网络(DBN)
DBN,英文全称deep belief network,是使用层叠波尔兹曼机 (Restricted Boltzmann Machines, RBM)组成深度神经网络。下图为受限玻尔兹曼机的结构。图中的上层神经元组成隐层,下层神经元组成显层。每一层都可以用一个向量来表示。每一个 RBM 都可以单独用作聚类器,RBM 有两层神经元,一层叫显层 (visible layer),由显元 (visible units) 组成,用于输入数据;另一层叫隐层 (Hidden layer),由隐元 (hidden u原创 2020-08-09 13:41:05 · 11279 阅读 · 0 评论