数据结构(一)--顺序表、链表

顺序表:使用一段连物理地址连续的存储单元依次存放数据元素的线性结构;主要表现形式为数组;

空间示意图:

顺序表可以划分为:

             1、静态顺序表:使用固定的空间长度来存储数据元素;空间位于栈上;

代码实现:


#define N 1024

typedef struct SeqList {
    int arr[N];   //申请固定大小空间
    size_t size;  
};

 

             2、动态顺序表:使用动态开辟的空间进行元素存储;空间位于堆上;

代码实现:

typedef struct Seqlist {
    int* arr;        //指向动态开辟的空间
    size_t size;
    size_t capicity;
};

优点 : 空间连续、支持随机访问、查找操作的代价小;

缺点:

中间/头部的插入和删除操作,代价较大,时间复杂度为O(N);

空间的扩容有时需要拷贝数据,释放旧空间,消耗较大;

链表:一种逻辑顺序上连续但是物理结构非连续的存储结构,其中逻辑顺序的连续由指针实现;

空间示意图(以单向无头非循环链表为例):

链表结构实现起来多种多样,下面的情况组合起来可以产生8种链表的结构(自行组合):

单向、双向-------带头、不带头------循环、非循环; 

单向链表的代码实现:

typedef int Type;
//节点结构体
typedef struct Node {
 Type data;
 struct Node* next;
}Node;
//链表结构体:存放节点元素
typedef struct Slist {
 Node* _head;
}Slist;

双向链表的实现:


typedef struct node {

	int val;

	struct node* prev;

	struct node* next;

}node;

 

typedef struct list{

	struct node* head;

}list;

 

优点:插入删除操作时间复杂度为O(1),没有增容的问题空间比较灵活;

缺点:不支持随机访问,以节点为单位存储;

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值