[优化算法]梯度下降法-白老爹定理


参考视频如下:
B站大佬视频,我只是学习记录的菜鸡

1. 概述

Baillon Haddad Theorem白老爹定理
f f f凸函数可微,则有下列等价条件

  1. ∇ f , L − L i p s c h i t z \nabla f ,L-Lipschitz f,LLipschitz连续
  2. g ( x ) = L 2 x T x − f ( x ) g(x)=\frac{L}{2}x^Tx-f(x) g(x)=2LxTxf(x)是凸的:用一个二次函数 L 2 x T x − \frac{L}{2}x^Tx- 2LxTx减去一个凸函数f(x)后还是凸
  3. ∇ f \nabla f f有余强制性,即 ( ∇ f ( x ) − ∇ f ( y ) ) T ( x − y ) ≥ 1 L ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ 2 (\nabla f(x)-\nabla f(y))^T(x-y)\ge \frac{1}{L}||\nabla f(x)-\nabla f(y)||^2 (f(x)f(y))T(xy)L1∣∣∇f(x)f(y)2

2. 利普希茨连续的定义

L−Lipschitz
利普希茨连续的定义是:如果函数 f 在区间 Q 上以常数 L 利普希茨连续,那么对于 x,y ∈ Q ,有: ∣∣f (x)−f (y)∣∣ ≤ L∣∣x− y∣∣ 其中常数 L 称为 f 在区间 Q 上的 Lipschitz常数 。

3. 等价条件证明

3.1 条件1 --> 条件2

已知: f f f凸函数可微,且 ∇ f , L − L i p s c h i t z \nabla f ,L-Lipschitz f,LLipschitz连续
证明: g ( x ) = L 2 x T x − f ( x ) g(x)=\frac{L}{2}x^Tx-f(x) g(x)=2LxTxf(x)是凸的:

  • 因为 g ( x ) = L 2 x T x − f ( x ) g(x)=\frac{L}{2}x^Tx-f(x) g(x)=2LxTxf(x),求导可得:
    ∇ g ( x ) = L x − ∇ f ( x ) \begin{equation} \nabla g(x)=Lx-\nabla f(x) \end{equation} g(x)=Lxf(x)
  • 对于 ∀ x , y ∈ R n , \forall x,y \in \mathbb{R}^n, x,yRn,如下:
    [ ∇ g ( x ) − ∇ g ( y ) ] T ( x − y ) = [ L x − ∇ f ( x ) − L y + ∇ f ( y ) ] T ( x − y ) \begin{equation} [\nabla g(x)-\nabla g(y)]^T(x-y)=[Lx-\nabla f(x)-Ly+\nabla f(y)]^T(x-y) \end{equation} [g(x)g(y)]T(xy)=[Lxf(x)Ly+f(y)]T(xy)
  • 整理可得,L为标量:
    = L ( x − y ) T ( x − y ) − [ ∇ f ( x ) − ∇ f ( y ) ] T ( x − y ) \begin{equation} =L(x-y)^T(x-y)-[\nabla f(x)-\nabla f(y)]^T(x-y) \end{equation} =L(xy)T(xy)[f(x)f(y)]T(xy)
  • 因为 a T b = ∣ a ∣ ⋅ ∣ b ∣ ⋅ cos ⁡ ( θ ) a^Tb=|a|\cdot |b| \cdot \cos(\theta) aTb=abcos(θ),所以
    − ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ⋅ ∣ ∣ x − y ∣ ∣ ≥ − [ ∇ f ( x ) − ∇ f ( y ) ] T ( x − y ) \begin{equation} -||\nabla f(x)-\nabla f(y)||\cdot||x-y|| \ge -[\nabla f(x)-\nabla f(y)]^T(x-y) \end{equation} ∣∣∇f(x)f(y)∣∣∣∣xy∣∣[f(x)f(y)]T(xy)
  • 代入整理可得:
    [ ∇ g ( x ) − ∇ g ( y ) ] T ( x − y ) ≥ L ( x − y ) T ( x − y ) − ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ⋅ ∣ ∣ x − y ∣ ∣ \begin{equation} [\nabla g(x)-\nabla g(y)]^T(x-y)\ge L(x-y)^T(x-y)-||\nabla f(x)-\nabla f(y)||\cdot||x-y|| \end{equation} [g(x)g(y)]T(xy)L(xy)T(xy)∣∣∇f(x)f(y)∣∣∣∣xy∣∣
  • 由于 ∇ f , L − L i p s c h i t z \nabla f ,L-Lipschitz f,LLipschitz连续,所以可得:
    ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ≤ L ∣ ∣ x − y ∣ ∣ \begin{equation} ||\nabla f(x)-\nabla f(y)||\le L||x-y|| \end{equation} ∣∣∇f(x)f(y)∣∣L∣∣xy∣∣
  • 代入可得:
    [ ∇ g ( x ) − ∇ g ( y ) ] T ( x − y ) ≥ L ∣ ∣ x − y ∣ ∣ 2 − L ∣ ∣ x − y ∣ ∣ ⋅ ∣ ∣ x − y ∣ ∣ ≥ 0 \begin{equation} [\nabla g(x)-\nabla g(y)]^T(x-y)\ge L||x-y||^2-L||x-y||\cdot||x-y|| \ge 0 \end{equation} [g(x)g(y)]T(xy)L∣∣xy2L∣∣xy∣∣∣∣xy∣∣0
  • 综上所述:
    [ ∇ g ( x ) − ∇ g ( y ) ] T ( x − y ) ≥ 0 \begin{equation} [\nabla g(x)-\nabla g(y)]^T(x-y)\ge 0 \end{equation} [g(x)g(y)]T(xy)0
  • 条件1 推 条件2 小结,:
    g ( x ) = L 2 x T x − f ( x ) 是凸的 \begin{equation} g(x)=\frac{L}{2}x^Tx-f(x)是凸的 \end{equation} g(x)=2LxTxf(x)是凸的

3.2 条件3 --> 条件1

已知: ∇ f \nabla f f有余强制性,即 ( ∇ f ( x ) − ∇ f ( y ) ) T ( x − y ) ≥ 1 L ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ 2 (\nabla f(x)-\nabla f(y))^T(x-y)\ge \frac{1}{L}||\nabla f(x)-\nabla f(y)||^2 (f(x)f(y))T(xy)L1∣∣∇f(x)f(y)2
证明: ∇ f , L − L i p s c h i t z \nabla f ,L-Lipschitz f,LLipschitz连续, ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ≤ L ⋅ ∣ ∣ x − y ∣ ∣ ||\nabla f(x)-\nabla f(y)||\le L\cdot ||x-y|| ∣∣∇f(x)f(y)∣∣L∣∣xy∣∣

  • 点积公式展开:
    ( ∇ f ( x ) − ∇ f ( y ) ) T ( x − y ) = ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ⋅ ∣ ∣ x − y ∣ ∣ ⋅ cos ⁡ ( θ ) , cos ⁡ ( θ ) ≤ 1 \begin{equation} (\nabla f(x)-\nabla f(y))^T(x-y)=||\nabla f(x)-\nabla f(y)||\cdot ||x-y|| \cdot \cos(\theta),\cos(\theta)\le1 \end{equation} (f(x)f(y))T(xy)=∣∣∇f(x)f(y)∣∣∣∣xy∣∣cos(θ)cos(θ)1
  • 可得不等式如下:
    ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ⋅ ∣ ∣ x − y ∣ ∣ ≥ ( ∇ f ( x ) − ∇ f ( y ) ) T ( x − y ) \begin{equation} ||\nabla f(x)-\nabla f(y)||\cdot ||x-y||\ge (\nabla f(x)-\nabla f(y))^T(x-y) \end{equation} ∣∣∇f(x)f(y)∣∣∣∣xy∣∣(f(x)f(y))T(xy)
  • 代入条件3可得:
    ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ⋅ ∣ ∣ x − y ∣ ∣ ≥ 1 L ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ 2 \begin{equation} ||\nabla f(x)-\nabla f(y)||\cdot ||x-y||\ge \frac{1}{L}||\nabla f(x)-\nabla f(y)||^2 \end{equation} ∣∣∇f(x)f(y)∣∣∣∣xy∣∣L1∣∣∇f(x)f(y)2
  • 因为 ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ > 0 ||\nabla f(x)-\nabla f(y)||>0 ∣∣∇f(x)f(y)∣∣>0可得:
    ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ ≤ L ⋅ ∣ ∣ x − y ∣ ∣ \begin{equation} ||\nabla f(x)-\nabla f(y)||\le L\cdot ||x-y|| \end{equation} ∣∣∇f(x)f(y)∣∣L∣∣xy∣∣

3.3 条件2 --> 条件3

3.1.1 证明思路

已知: g ( x ) = L 2 x T x − f ( x ) g(x)=\frac{L}{2}x^Tx-f(x) g(x)=2LxTxf(x)是凸的
证明: ∇ f \nabla f f有余强制性,即 ( ∇ f ( x ) − ∇ f ( y ) ) T ( x − y ) ≥ 1 L ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ 2 (\nabla f(x)-\nabla f(y))^T(x-y)\ge \frac{1}{L}||\nabla f(x)-\nabla f(y)||^2 (f(x)f(y))T(xy)L1∣∣∇f(x)f(y)2

  • 证明:
  • 我们定义如下:
    Δ 1 = f ( y ) − [ f ( x ) + ∇ f T ( x ) ( y − x ) ] \begin{equation} \Delta_1=f(y)-[f(x)+\nabla f^T(x)(y-x)] \end{equation} Δ1=f(y)[f(x)+fT(x)(yx)]
    Δ 2 = f ( x ) − [ f ( y ) + ∇ f T ( y ) ( x − y ) ] \begin{equation} \Delta_2=f(x)-[f(y)+\nabla f^T(y)(x-y)] \end{equation} Δ2=f(x)[f(y)+fT(y)(xy)]
    Δ 1 + Δ 2 = [ ∇ f ( x ) − ∇ f ( y ) ] T ( x − y ) \begin{equation} \Delta_1+\Delta_2=[\nabla f(x)-\nabla f(y)]^T(x-y) \end{equation} Δ1+Δ2=[f(x)f(y)]T(xy)
  • 假设我们能够证明如下:最重要!!!!!
    Δ 1 ≥ 1 2 L [ ∇ f ( x ) − ∇ f ( y ) ] 2 ; Δ 2 ≥ 1 2 L [ ∇ f ( x ) − ∇ f ( y ) ] 2 \begin{equation} \Delta_1\ge \frac{1}{2L}[\nabla f(x)-\nabla f(y)]^2;\Delta_2\ge \frac{1}{2L}[\nabla f(x)-\nabla f(y)]^2 \end{equation} Δ12L1[f(x)f(y)]2;Δ22L1[f(x)f(y)]2
  • 将上述式子相加可得条件2的结论:
    Δ 1 + Δ 2 = [ ∇ f ( x ) − ∇ f ( y ) ] T ( x − y ) ≥ 1 L [ ∇ f ( x ) − ∇ f ( y ) ] 2 \begin{equation} \Delta_1+\Delta_2=[\nabla f(x)-\nabla f(y)]^T(x-y)\ge \frac{1}{L}[\nabla f(x)-\nabla f(y)]^2 \end{equation} Δ1+Δ2=[f(x)f(y)]T(xy)L1[f(x)f(y)]2
    在这里插入图片描述

3.1.2 证明过程:

  • 因为我们定义 Δ 1 \Delta_1 Δ1表示如下:
    Δ 1 = f ( y ) − [ f ( x ) + ∇ f T ( x ) ( y − x ) ] \begin{equation} \Delta_1=f(y)-[f(x)+\nabla f^T(x)(y-x)] \end{equation} Δ1=f(y)[f(x)+fT(x)(yx)]

  • 化简整理可得:
    Δ 1 = f ( y ) − ∇ f T ( x ) y − [ f ( x ) − ∇ f T ( x ) x ] \begin{equation} \Delta_1=f(y)-\nabla f^T(x)y-[f(x)-\nabla f^T(x)x] \end{equation} Δ1=f(y)fT(x)y[f(x)fT(x)x]

  • 我们定义一个新的函数如下:
    h x ( z ) = f ( z ) − ∇ f T ( x ) z → Δ 1 = h x ( y ) − h x ( x ) \begin{equation} h_x(z)=f(z)-\nabla f^T(x)z\rightarrow \Delta_1=h_x(y)-h_x(x) \end{equation} hx(z)=f(z)fT(x)zΔ1=hx(y)hx(x)

  • 因为 f ( z ) f(z) f(z)为凸函数, ∇ f T ( x ) z \nabla f^T(x)z fT(x)z为关于z的仿射一次函数,所以可得: h x ( z ) h_x(z) hx(z)为凸函数

  • 我们对 h x ( z ) h_x(z) hx(z)求导可得:
    ∇ h x ( z ) = ∇ f ( z ) − ∇ f ( x ) \begin{equation} \nabla h_x(z)=\nabla f(z)-\nabla f(x) \end{equation} hx(z)=f(z)f(x)

  • 我们可以看出,当 z = x z=x z=x时, ∇ h x ( z ) = ∇ f ( z ) − ∇ f ( z ) = 0 \nabla h_x(z)=\nabla f(z)-\nabla f(z)=0 hx(z)=f(z)f(z)=0,由于 h x ( z ) h_x(z) hx(z)为凸函数,可得:当z=x时候, h x ( z ) h_x(z) hx(z)取得最小值0,
    arg min ⁡ z = x h x ( z ) = 0 \begin{equation} \argmin\limits_{z=x}h_x(z)=0 \end{equation} z=xargminhx(z)=0

  • 根据条件2 : g ( x ) = L 2 x T x − f ( x ) g(x)=\frac{L}{2}x^Tx-f(x) g(x)=2LxTxf(x)是凸的
    g ( z ) = L 2 z T z − f ( z ) ; f ( z ) = h x ( z ) + ∇ f T ( x ) z \begin{equation} g(z)=\frac{L}{2}z^Tz-f(z);f(z)=h_x(z)+\nabla f^T(x)z \end{equation} g(z)=2LzTzf(z);f(z)=hx(z)+fT(x)z

  • 代入可得:
    g ( z ) = L 2 z T z − h x ( z ) − ∇ f T ( x ) z \begin{equation} g(z)=\frac{L}{2}z^Tz-h_x(z)-\nabla f^T(x)z \end{equation} g(z)=2LzTzhx(z)fT(x)z

  • 整理可得:
    g ( z ) + ∇ f T ( x ) z = L 2 ∣ ∣ z ∣ ∣ 2 − h x ( z ) \begin{equation} g(z)+\nabla f^T(x)z=\frac{L}{2}||z||^2-h_x(z) \end{equation} g(z)+fT(x)z=2L∣∣z2hx(z)

  • 我们定义新的函数如下:
    g x ( z ) = g ( z ) + ∇ f T ( x ) z \begin{equation} g_x(z)=g(z)+\nabla f^T(x)z \end{equation} gx(z)=g(z)+fT(x)z
    g x ( z ) = L 2 ∣ ∣ z ∣ ∣ 2 − h x ( z ) \begin{equation} g_x(z)=\frac{L}{2}||z||^2-h_x(z) \end{equation} gx(z)=2L∣∣z2hx(z)

  • 因为 g(z)我们条件为凸函数, ∇ f T ( x ) z \nabla f^T(x)z fT(x)z仿射变换,所以可得 g x ( z ) g_x(z) gx(z)为凸函数,所以可得其导数:
    ∇ g ( z ) = L ∣ ∣ z ∣ ∣ − ∇ h x ( z ) \begin{equation} \nabla g(z)=L||z||-\nabla h_x(z) \end{equation} g(z)=L∣∣z∣∣hx(z)
    g x ( z 2 ) ≥ g x ( z 1 ) + ∇ g x T ( z 1 ) ( z 2 − z 1 ) \begin{equation} g_x(z_2)\ge g_x(z_1)+\nabla g^T_x(z_1)(z_2-z_1) \end{equation} gx(z2)gx(z1)+gxT(z1)(z2z1)
    g x ( z 2 ) = L 2 ∣ ∣ z 2 ∣ ∣ 2 − h x ( z 2 ) \begin{equation} g_x(z_2)=\frac{L}{2}||z_2||^2-h_x(z_2) \end{equation} gx(z2)=2L∣∣z22hx(z2)
    g x ( z 1 ) = L 2 ∣ ∣ z 1 ∣ ∣ 2 − h x ( z 1 ) \begin{equation} g_x(z_1)=\frac{L}{2}||z_1||^2-h_x(z_1) \end{equation} gx(z1)=2L∣∣z12hx(z1)
    ∇ g x T ( z 1 ) ( z 2 − z 1 ) = [ L z 1 − ∇ h x ( z 1 ) ] ( z 2 − z 1 ) \begin{equation} \nabla g^T_x(z_1)(z_2-z_1)=[Lz_1-\nabla h_x(z_1)](z_2-z_1) \end{equation} gxT(z1)(z2z1)=[Lz1hx(z1)](z2z1)
    L 2 ∣ ∣ z 2 ∣ ∣ 2 − h x ( z 2 ) ≥ L 2 ∣ ∣ z 1 ∣ ∣ 2 − h x ( z 1 ) + [ L z 1 − ∇ h x ( z 1 ) ] ( z 2 − z 1 ) \begin{equation} \frac{L}{2}||z_2||^2-h_x(z_2)\ge \frac{L}{2}||z_1||^2-h_x(z_1)+[Lz_1-\nabla h_x(z_1)](z_2-z_1) \end{equation} 2L∣∣z22hx(z2)2L∣∣z12hx(z1)+[Lz1hx(z1)](z2z1)

  • 整理上述公式可得:
    h x ( z 2 ) ≤ L 2 ∣ ∣ z 2 ∣ ∣ 2 − L 2 ∣ ∣ z 1 ∣ ∣ 2 + h x ( z 1 ) + [ ∇ h x ( z 1 ) − L z 1 ] ( z 2 − z 1 ) \begin{equation} h_x(z_2)\le \frac{L}{2}||z_2||^2-\frac{L}{2}||z_1||^2+h_x(z_1)+[\nabla h_x(z_1)-Lz_1](z_2-z_1) \end{equation} hx(z2)2L∣∣z222L∣∣z12+hx(z1)+[hx(z1)Lz1](z2z1)

  • 我们又要新定义一个关于 z 2 z_2 z2的二次函数如下:[将右边定义为一个函数]

  • 这里将 z 2 z_2 z2当作变量, z 1 z_1 z1当作常数看待,就是一个抛物线函数了,并且我们定义L>0.那么就存在最小值
    ϕ ( z 2 ) = L 2 ∣ ∣ z 2 ∣ ∣ 2 − L 2 ∣ ∣ z 1 ∣ ∣ 2 + h x ( z 1 ) + [ ∇ h x ( z 1 ) − L z 1 ] ( z 2 − z 1 ) \begin{equation} \phi(z_2)= \frac{L}{2}||z_2||^2-\frac{L}{2}||z_1||^2+h_x(z_1)+[\nabla h_x(z_1)-Lz_1](z_2-z_1) \end{equation} ϕ(z2)=2L∣∣z222L∣∣z12+hx(z1)+[hx(z1)Lz1](z2z1)

  • ϕ ( z 2 ) \phi(z_2) ϕ(z2)的最小值,求导函数可得:
    ∇ ϕ ( z 2 ) = L z 2 + ∇ h x ( z 1 ) − L z 1 = 0 → z 2 m i n = z 1 − ∇ h x ( z 1 ) L \begin{equation} \nabla\phi(z_2)= Lz_2+\nabla h_x(z_1)-Lz_1=0\rightarrow z_{2min}=z_1-\frac{\nabla h_x(z_1)}{L} \end{equation} ϕ(z2)=Lz2+hx(z1)Lz1=0z2min=z1Lhx(z1)

  • 代入方程可得:
    ϕ ( z 2 m i n ) = ϕ ( z 1 − ∇ h x ( z 1 ) L ) = h x ( z 1 ) − 1 2 L ∣ ∣ ∇ h x ( z 1 ) ∣ ∣ 2 \begin{equation} \phi(z_{2min})=\phi(z_1-\frac{\nabla h_x(z_1)}{L})=h_x(z_1)-\frac{1}{2L}||\nabla h_x(z_1)||^2 \end{equation} ϕ(z2min)=ϕ(z1Lhx(z1))=hx(z1)2L1∣∣∇hx(z1)2

  • 综上所述,代入不等式中可得:
    h x ( z 2 ) ≤ i n f { ϕ ( z 2 ) } = ϕ ( z 2 m i n ) = h x ( z 1 ) − 1 2 L ∣ ∣ ∇ h x ( z 1 ) ∣ ∣ 2 \begin{equation} h_x(z_2)\le inf\{ \phi(z_2) \}=\phi(z_{2min})= h_x(z_1)-\frac{1}{2L}||\nabla h_x(z_1)||^2 \end{equation} hx(z2)inf{ϕ(z2)}=ϕ(z2min)=hx(z1)2L1∣∣∇hx(z1)2

  • 整理可得:
    h x ( z 2 ) ≤ h x ( z 1 ) − 1 2 L ∣ ∣ ∇ h x ( z 1 ) ∣ ∣ 2 \begin{equation} h_x(z_2)\le h_x(z_1)-\frac{1}{2L}||\nabla h_x(z_1)||^2 \end{equation} hx(z2)hx(z1)2L1∣∣∇hx(z1)2

  • 我们已经求过 h x ( z ) h_x(z) hx(z)取得最小值0,且在 z=x上取得,即所以可得:
    h x ( x ) ≤ h x ( z 2 ) ≤ h x ( z 1 ) − 1 2 L ∣ ∣ ∇ h x ( z 1 ) ∣ ∣ 2 \begin{equation} h_x(x)\le h_x(z_2)\le h_x(z_1)-\frac{1}{2L}||\nabla h_x(z_1)||^2 \end{equation} hx(x)hx(z2)hx(z1)2L1∣∣∇hx(z1)2

  • z 1 z_1 z1换为y可得:
    h x ( x ) ≤ h x ( y ) − 1 2 L ∣ ∣ ∇ h x ( y ) ∣ ∣ 2 \begin{equation} h_x(x)\le h_x(y)-\frac{1}{2L}||\nabla h_x(y)||^2 \end{equation} hx(x)hx(y)2L1∣∣∇hx(y)2

  • 整理可得:
    h x ( y ) − h x ( x ) ≥ ∣ ∣ ∇ h x ( y ) ∣ ∣ 2 2 L \begin{equation} h_x(y)-h_x(x)\ge \frac{||\nabla h_x(y)||^2}{2L} \end{equation} hx(y)hx(x)2L∣∣∇hx(y)2

  • 我们上面已经定义如下:
    Δ 1 = h x ( y ) − h x ( x ) ; ∇ h x ( y ) = ∇ f ( y ) − ∇ f ( x ) \begin{equation} \Delta_1=h_x(y)-h_x(x);\nabla h_x(y)=\nabla f(y)-\nabla f(x) \end{equation} Δ1=hx(y)hx(x)hx(y)=f(y)f(x)

  • 整理后可得,居然跟第17公式一样,我们就这样完美证明了:
    Δ 1 ≥ ∣ ∣ ∇ f ( y ) − ∇ f ( x ) ∣ ∣ 2 2 L \begin{equation} \Delta_1\ge \frac{||\nabla f(y)-\nabla f(x)||^2}{2L} \end{equation} Δ12L∣∣∇f(y)f(x)2

  • 同理可证:
    Δ 2 ≥ ∣ ∣ ∇ f ( y ) − ∇ f ( x ) ∣ ∣ 2 2 L \begin{equation} \Delta_2\ge \frac{||\nabla f(y)-\nabla f(x)||^2}{2L} \end{equation} Δ22L∣∣∇f(y)f(x)2

  • Δ 1 + Δ 2 \Delta_1+\Delta_2 Δ1+Δ2可得:

Δ 1 + Δ 2 ≥ ∣ ∣ ∇ f ( y ) − ∇ f ( x ) ∣ ∣ 2 L \begin{equation} \Delta_1+\Delta_2\ge \frac{||\nabla f(y)-\nabla f(x)||^2}{L} \end{equation} Δ1+Δ2L∣∣∇f(y)f(x)2
Δ 1 + Δ 2 = [ ∇ f ( x ) − ∇ f ( y ) ] T ( x − y ) \begin{equation} \Delta_1+\Delta_2=[\nabla f(x)-\nabla f(y)]^T(x-y) \end{equation} Δ1+Δ2=[f(x)f(y)]T(xy)

  • 综上所述可得:
    [ ∇ f ( x ) − ∇ f ( y ) ] T ( x − y ) ≥ ∣ ∣ ∇ f ( y ) − ∇ f ( x ) ∣ ∣ 2 L \begin{equation} [\nabla f(x)-\nabla f(y)]^T(x-y)\ge \frac{||\nabla f(y)-\nabla f(x)||^2}{L} \end{equation} [f(x)f(y)]T(xy)L∣∣∇f(y)f(x)2
    !!!完结撒花!!! !!!完结撒花!!! !!!完结撒花!!!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值