1. 极方向定义
极方向是指从凸集的一点触发,无法被该点与其他店的连线所包含的方向。
- 假设d是集合S的极方向,x是集合S的点,对于任意的
λ
≥
0
\lambda \ge0
λ≥0,总存在:
x ∈ S , S = { x ∣ A x = b , x ≥ 0 } ∀ λ ≥ 0 , ∃ d , x + λ d ≥ 0 , A ( x + λ d ) = b \begin{equation}\begin{aligned} &x\in S,S=\{x\big|Ax=b,x\ge0\}\\ &\forall \lambda\ge0,\exist d,x+\lambda d\ge0,A(x+\lambda d)=b\\ \end{aligned}\end{equation} x∈S,S={x Ax=b,x≥0}∀λ≥0,∃d,x+λd≥0,A(x+λd)=b - 由于
A
(
x
+
λ
d
)
=
b
,
A
x
=
b
,
∀
λ
≥
0
A(x+\lambda d)=b,Ax=b,\forall \lambda \ge 0
A(x+λd)=b,Ax=b,∀λ≥0,可得
A
d
=
0
,
d
≥
0
Ad=0,d\ge0
Ad=0,d≥0
- 如果d是极方向,d不可有其他两个方向线性表出:
d 是 S 的方向 ⟷ A d = 0 , d ≥ 0 d 是极方向 ⟷ d ≠ λ 1 d ˉ + λ 2 d ~ λ 1 > 0 , λ 2 > 0 , d ˉ , d ~ 是 S 的方向 \begin{equation}\begin{aligned} &d是S的方向 \longleftrightarrow Ad=0,d\ge0\\ &d是极方向\longleftrightarrow d\neq \lambda_1\bar{d}+\lambda_2\tilde{d}\\ &\lambda_1>0,\lambda_2>0,\bar{d},\tilde{d}是S的方向\\ \end{aligned}\end{equation} d是S的方向⟷Ad=0,d≥0d是极方向⟷d=λ1dˉ+λ2d~λ1>0,λ2>0,dˉ,d~是S的方向
2. 定理
2.1 概述
考虑多面体 S = { x ∣ A x = b , x ≥ 0 } S=\{x\big|Ax=b,x\ge 0\} S={x Ax=b,x≥0},这里假设 A m × n A_{m\times n} Am×n行满秩。
-
d
∈
R
n
d\in R^n
d∈Rn是S的极方向当且仅当存在矩阵A的分解A=(B,N),使得:
d = t ( − B − 1 a j e j ) \begin{equation} d=t\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix} \end{equation} d=t −B−1ajej
其中, t > 0 , B − 1 a j ≤ 0 , t>0,B^{-1}a_j\le0, t>0,B−1aj≤0,, a j a_j aj为矩阵N的第 j j j列, e j ∈ R n − m e_j\in R^{n-m} ej∈Rn−m的第 j j j个分量为1,其余分量为0; - 有限个极方向
2.2 证明1
- 已知:
d = ( − B − 1 a j e j ) ≥ 0 , A = ( B , N ) , a j 为矩阵 N 的第 j 列 \begin{equation} d=\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}\ge 0,A=(B,N),a_j为矩阵N的第j列 \end{equation} d= −B−1ajej ≥0,A=(B,N),aj为矩阵N的第j列 - 证明: d方向是极方向
-我们计算Ad
A d = ( B , N ) ( − B − 1 a j e j ) = − a j + N e j \begin{equation} Ad=(B,N)\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}=-a_j+Ne_j \end{equation} Ad=(B,N) −B−1ajej =−aj+Nej - 因为
a
j
a_j
aj为矩阵N的第
j
j
j列,
e
j
∈
R
n
−
m
e_j\in R^{n-m}
ej∈Rn−m的第
j
j
j个分量为1,其余分量为0,可得
−
a
j
+
N
e
j
=
0
-a_j+Ne_j=0
−aj+Nej=0
A d = ( B , N ) ( − B − 1 a j e j ) = − a j + N e j = 0 \begin{equation} Ad=(B,N)\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}=-a_j+Ne_j=0 \end{equation} Ad=(B,N) −B−1ajej =−aj+Nej=0 - 可得d为集合S的方向。不妨设:
d = λ 1 d ˉ + λ 2 d ~ , λ 1 > 0 , λ 2 > 0 , d ˉ , d ~ ∈ S \begin{equation} d=\lambda_1\bar{d}+\lambda_2\tilde{d},\lambda_1>0,\lambda_2>0,\bar{d},\tilde{d}\in S \end{equation} d=λ1dˉ+λ2d~,λ1>0,λ2>0,dˉ,d~∈S - 因为 , d ˉ , d ~ ∈ S ,\bar{d},\tilde{d}\in S ,dˉ,d~∈S可得如下:
- 将方向进行分组可得:
d ˉ = ( d B ˉ d N ˉ ) ; d ~ = ( d B ~ d N ~ ) \begin{equation} \bar{d}=\begin{pmatrix}\bar{d_B}\\\\\bar{d_N}\end{pmatrix};\tilde{d}=\begin{pmatrix}\tilde{d_B}\\\\\tilde{d_N}\end{pmatrix} \end{equation} dˉ= dBˉdNˉ ;d~= dB~dN~ - 分别代入方程可得:
( − B − 1 a j e j ) = λ 1 ( d B ˉ d N ˉ ) + λ 2 ( d B ~ d N ~ ) \begin{equation} \begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}=\lambda_1\begin{pmatrix}\bar{d_B}\\\\\bar{d_N}\end{pmatrix}+\lambda_2\begin{pmatrix}\tilde{d_B}\\\\\tilde{d_N}\end{pmatrix} \end{equation} −B−1ajej =λ1 dBˉdNˉ +λ2 dB~dN~ - 整理可得:
e j = λ 1 d N ˉ + λ 2 d N ~ , λ 1 > 0 , λ 2 > 0 \begin{equation} e_j=\lambda_1\bar{d_N}+\lambda_2\tilde{d_N},\lambda_1>0,\lambda_2>0 \end{equation} ej=λ1dNˉ+λ2dN~,λ1>0,λ2>0 - e j ∈ R n − m e_j\in R^{n-m} ej∈Rn−m的第 j j j个分量为1,其余分量为0;
- 可得,
d
N
ˉ
,
d
N
~
\bar{d_N},\tilde{d_N}
dNˉ,dN~除了第j项外,其他分量为0,不然无法求和为0,这样两个方向就通向了,记如下:
d N ˉ = t 1 e j ; d N ~ = t 2 e j , t 1 ≥ 0 , t 2 ≥ 0 \begin{equation} \bar{d_N}=t_1e_j;\tilde{d_N}=t_2e_j,t_1\ge0,t_2\ge0 \end{equation} dNˉ=t1ej;dN~=t2ej,t1≥0,t2≥0 - 证明
t
1
≠
0
,
t
2
≠
0
t_1\ne0,t_2\ne 0
t1=0,t2=0,假设
t
1
=
0
t_1=0
t1=0,可得
d
N
ˉ
=
0
\bar{d_N}=0
dNˉ=0,因为
A
d
ˉ
=
0
A\bar{d}=0
Adˉ=0
A d ˉ = ( B , N ) ( d B ˉ 0 ) = B d B ˉ , A d ˉ = 0 → B d B ˉ = 0 , B 可逆 → , d B ˉ = 0 \begin{equation} A\bar{d}=(B,N)\begin{pmatrix}\bar{d_B}\\\\0\end{pmatrix}=B\bar{d_B},A\bar{d}=0\to B\bar{d_B}=0,B可逆\to,\bar{d_B}=0 \end{equation} Adˉ=(B,N) dBˉ0 =BdBˉ,Adˉ=0→BdBˉ=0,B可逆→,dBˉ=0 - 我们可得方向向量d
d ˉ = ( d B ˉ d N ˉ ) = ( 0 0 ) → 与方向向量不为零向量矛盾,所以 t 1 ≠ 0 , 同理 t 2 ≠ 0 \begin{equation} \bar{d}=\begin{pmatrix}\bar{d_B}\\\\\bar{d_N}\end{pmatrix}=\begin{pmatrix}0\\\\0\end{pmatrix}\to 与方向向量不为零向量矛盾,所以t_1\ne0,同理 t_2\ne0 \end{equation} dˉ= dBˉdNˉ = 00 →与方向向量不为零向量矛盾,所以t1=0,同理t2=0 - 可得: t 1 > 0 , t 2 > 0 t_1>0,t_2>0 t1>0,t2>0
- 考虑
d
ˉ
\bar{d}
dˉ是集合S的方向,所以可得
A
d
ˉ
=
0
A\bar{d}=0
Adˉ=0,展开可得:
A d ˉ = ( B , N ) ( d B ˉ d N ˉ ) = ( B , N ) ( d B ˉ t 1 e j ) = B d B ˉ + N t 1 e j = 0 \begin{equation} A\bar{d}=(B,N)\begin{pmatrix}\bar{d_B}\\\\\bar{d_N}\end{pmatrix}=(B,N)\begin{pmatrix}\bar{d_B}\\\\t_1e_j\end{pmatrix}=B\bar{d_B}+Nt_1e_j=0 \end{equation} Adˉ=(B,N) dBˉdNˉ =(B,N) dBˉt1ej =BdBˉ+Nt1ej=0 -
N
t
1
e
j
=
t
1
a
j
Nt_1e_j=t_1a_j
Nt1ej=t1aj可得:
B d B ˉ + t 1 a j = 0 → d B ˉ = − t 1 B − 1 a j \begin{equation} B\bar{d_B}+t_1a_j=0\to \bar{d_B}=-t_1B^{-1}a_j \end{equation} BdBˉ+t1aj=0→dBˉ=−t1B−1aj - 我们知道
d
N
ˉ
=
t
1
e
j
\bar{d_N}=t_1e_j
dNˉ=t1ej
d ˉ = ( d B ˉ d N ˉ ) = ( − t 1 B − 1 a j t 1 e j ) = t 1 ( − B − 1 a j e j ) \begin{equation} \bar{d}=\begin{pmatrix}\bar{d_B}\\\\\bar{d_N}\end{pmatrix}=\begin{pmatrix}-t_1B^{-1}a_j\\\\t_1e_j\end{pmatrix}=t_1\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix} \end{equation} dˉ= dBˉdNˉ = −t1B−1ajt1ej =t1 −B−1ajej - 由已知条件:
d = ( − B − 1 a j e j ) → d ˉ = t 1 d \begin{equation} d=\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}\to \bar{d}=t_1d \end{equation} d= −B−1ajej →dˉ=t1d - 同理我们可以证明: d ~ = t 2 d \tilde{d}=t_2 d d~=t2d,也就是说,我们一开始选择两个方向的 d ˉ , d ~ \bar{d},\tilde{d} dˉ,d~,最后它们居然变成了同一个方向 d d d,与我们假设的不同方向矛盾,所以,这个方向就一定是极方向。
2.3 证明2
- 已知: d 方向是极方向, A d = 0 , d ≥ 0 Ad=0,d\ge0 Ad=0,d≥0
- 证明:
d = ( − B − 1 a j e j ) ≥ 0 , A = ( B , N ) , a j 为矩阵 N 的第 j 列 \begin{equation} d=\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}\ge 0,A=(B,N),a_j为矩阵N的第j列 \end{equation} d= −B−1ajej ≥0,A=(B,N),aj为矩阵N的第j列
– 证明:
不妨设d的分量重由k+1
个正的,其余为0
d = ( d 1 d 2 ⋯ d k 0 t ⋯ 0 ) T ; d 1 , d 2 , ⋯ , d k , t ≥ 0 \begin{equation} d=\begin{pmatrix}d_1&d_2&\cdots&d_k&0&&t&\cdots&0\end{pmatrix}^T;d_1,d_2,\cdots,d_k,t\ge 0\end{equation} d=(d1d2⋯dk0t⋯0)T;d1,d2,⋯,dk,t≥0 - 取对应的A的列 a 1 , a 2 , ⋯ , a k a_1,a_2,\cdots,a_k a1,a2,⋯,ak,若 a 1 , a 2 , ⋯ , a k a_1,a_2,\cdots,a_k a1,a2,⋯,ak
- 若
a
1
,
a
2
,
⋯
,
a
k
a_1,a_2,\cdots,a_k
a1,a2,⋯,ak相关,则存在不全为0的
θ
1
,
θ
2
,
⋯
,
θ
k
\theta_1,\theta_2,\cdots,\theta_k
θ1,θ2,⋯,θk使得:
θ 1 a 1 + θ 2 a 2 + ⋯ + θ k a k = 0 \begin{equation} \theta_1a_1+\theta_2a_2+\cdots+\theta_ka_k=0 \end{equation} θ1a1+θ2a2+⋯+θkak=0 - 构造
θ
=
(
θ
1
,
θ
2
,
⋯
,
0
,
⋯
,
0
)
T
∈
R
n
\theta=(\theta_1,\theta_2,\cdots,0,\cdots,0)^T\in R^n
θ=(θ1,θ2,⋯,0,⋯,0)T∈Rn,取充分小的
ϵ
>
0
\epsilon >0
ϵ>0,可得:
d ˉ = d + ϵ θ ≥ 0 , d ~ = d − ϵ θ ≥ 0 → A d ˉ = 0 , A d ~ = 0 \begin{equation} \bar{d}=d+\epsilon\theta\ge0,\tilde{d}=d-\epsilon\theta\ge0\to A\bar{d}=0,A\tilde{d}=0 \end{equation} dˉ=d+ϵθ≥0,d~=d−ϵθ≥0→Adˉ=0,Ad~=0 - 由此可得:
d
=
1
2
d
ˉ
+
1
2
d
~
d=\frac{1}{2}\bar{d}+\frac{1}{2}\tilde{d}
d=21dˉ+21d~,可知,d表示为另外两个方向的正组合,与d是极方向矛盾,所以可得:
a 1 , a 2 , ⋯ , a k 不相关 → k ≤ m a_1,a_2,\cdots,a_k不相关\to k\le m a1,a2,⋯,ak不相关→k≤m
— 情况1:- 假设k=m
可得:
d = ( d 1 d 2 ⋯ d k 0 t ⋯ 0 ) T ; d 1 , d 2 , ⋯ , d k , t ≥ 0 \begin{equation} d=\begin{pmatrix}d_1&d_2&\cdots&d_k&0&&t&\cdots&0\end{pmatrix}^T;d_1,d_2,\cdots,d_k,t\ge 0\end{equation} d=(d1d2⋯dk0t⋯0)T;d1,d2,⋯,dk,t≥0
- 可得:
d = ( d 1 d 2 ⋯ d m 0 t ⋯ 0 ) T ; \begin{equation}d=\begin{pmatrix}d_1&d_2&\cdots&d_m&0&&t&\cdots&0\end{pmatrix}^T;\end{equation} d=(d1d2⋯dm0t⋯0)T;
d B = ( d 1 d 2 ⋯ d m ) T ; d N = t e j \begin{equation}d_B=\begin{pmatrix}d_1&d_2&\cdots&d_m\end{pmatrix}^T;d_N=te_j\end{equation} dB=(d1d2⋯dm)T;dN=tej - 记
B
=
(
a
1
,
a
2
,
⋯
,
a
m
)
T
B=(a_1,a_2,\cdots,a_m)^T
B=(a1,a2,⋯,am)T,N为剩下的项,可得:
因为 A d = 0 → 可得 ( B , N ) ( d B d N ) = B d B + N d N = B d B + t N e j = B d B + t a j = 0 \begin{equation} 因为 Ad=0\to可得 (B,N)\begin{pmatrix}d_B\\\\d_N\end{pmatrix}=Bd_B+Nd_N=Bd_B+tNe_j=Bd_B+ta_j=0 \end{equation} 因为Ad=0→可得(B,N) dBdN =BdB+NdN=BdB+tNej=BdB+taj=0 - 则可得:
d B = t B − 1 a j ; d N = t e j ; d = ( d B d N ) \begin{equation} d_B=tB^{-1}a_j;d_N=te_j;d=\begin{pmatrix}d_B\\\\d_N\end{pmatrix} \end{equation} dB=tB−1aj;dN=tej;d= dBdN - 整理可得:
d = ( t B − 1 a j t e j ) = t ( B − 1 a j e j ) \begin{equation} d=\begin{pmatrix}tB^{-1}a_j\\\\te_j\end{pmatrix}=t\begin{pmatrix}B^{-1}a_j\\\\e_j\end{pmatrix} \end{equation} d= tB−1ajtej =t B−1ajej
— 情况2:- 假设k < m
可得: - 根据上面已证明可得 : a 1 , a 2 , ⋯ , a k 不相关 a_1,a_2,\cdots,a_k不相关 a1,a2,⋯,ak不相关,则必然可以剩余的列【除了1,2,…,k列,t对应的列】,可以选 a k + 1 , ⋯ , a m a_{k+1},\cdots,a_m ak+1,⋯,am
- 使得 a 1 , ⋯ , a k , ⋯ , a m a_1,\cdots,a_k,\cdots,a_m a1,⋯,ak,⋯,am线性无关, B = ( a 1 , ⋯ , a m ) B=(a_1,\cdots,a_m) B=(a1,⋯,am),N为剩余的列
- d B = ( d 1 , ⋯ , d m ) , d N = ( 0 , 0 , ⋯ , t , 0 , ⋯ , 0 ) d_B=(d_1,\cdots,d_m),d_N=(0,0,\cdots,t,0,\cdots,0) dB=(d1,⋯,dm),dN=(0,0,⋯,t,0,⋯,0)
- 因为 Ad=0可得:
A d = ( B , N ) ( d B d N ) = 0 → d = t ( B − 1 a j e j ) \begin{equation} Ad=(B,N)\begin{pmatrix}d_B\\\\d_N\end{pmatrix}=0\to d=t\begin{pmatrix}B^{-1}a_j\\\\e_j\end{pmatrix} \end{equation} Ad=(B,N) dBdN =0→d=t B−1ajej
3. 多面体的分解定理
多面体的分解定理:线性规划单纯形法的理论基础
3.1 定义:
假设S的极点为
x
1
,
⋯
,
x
k
x_1,\cdots,x_k
x1,⋯,xk,极方向为
d
1
,
⋯
,
d
l
d_1,\cdots,d_l
d1,⋯,dl,则
x
∈
S
x\in S
x∈S,当且仅当x具有如下形式:
x
=
∑
i
=
1
k
λ
i
x
i
+
∑
j
=
1
l
μ
j
d
j
∑
i
=
1
k
λ
i
=
1
,
λ
i
≥
0
;
i
=
1
,
⋯
,
k
μ
j
≥
0
,
j
=
1
,
⋯
,
l
\begin{equation}\begin{aligned} &x=\sum_{i=1}^k\lambda_ix_i+\sum_{j=1}^l\mu_jd_j\\ &\sum_{i=1}^k\lambda_i=1,\lambda_i\ge0;i=1,\cdots,k\\ &\mu_j\ge0,j=1,\cdots,l \end{aligned}\end{equation}
x=i=1∑kλixi+j=1∑lμjdji=1∑kλi=1,λi≥0;i=1,⋯,kμj≥0,j=1,⋯,l
3.2 矩阵思路[仅供参考]个人思路:
- 当
d
j
d_j
dj为极方向时,可得:
A
d
j
=
0
Ad_j=0
Adj=0,且
d
j
d_j
dj是唯一的,其实可以看出
d
j
d_j
dj是矩阵A的特征向量,我们知道
x
i
x_i
xi为极点,这可以得到
A
x
i
=
b
Ax_i=b
Axi=b,这里的
x
i
x_i
xi 其实本质上来说是矩阵Ax=b的特解,那么用线性代数的基本知识可得,Ax=b的通解为
特解+零空间解
- 那矩阵A里面的所有特解多少呢?
一般来说,我一开始认为只是极点,其实不是,特解应该是所有极点的线性组合。就是所有的边,所以由点组成边的表达式是
边 = ∑ i = 1 k λ i x i ; ∑ i = 1 k λ i = 1 \begin{equation}\begin{aligned} &边=\sum_{i=1}^k\lambda_ix_i;\sum_{i=1}^k\lambda_i=1\\ \end{aligned}\end{equation} 边=i=1∑kλixi;i=1∑kλi=1 - 零空间的解为: ∑ j = 1 l μ j d j \sum_{j=1}^l\mu_jd_j ∑j=1lμjdj
- 综上所述,通解 = 特解 + 零空间解
x = ∑ i = 1 k λ i x i + ∑ j = 1 l μ j d j ∑ i = 1 k λ i = 1 , λ i ≥ 0 ; i = 1 , ⋯ , k μ j ≥ 0 , j = 1 , ⋯ , l \begin{equation}\begin{aligned} &x=\sum_{i=1}^k\lambda_ix_i+\sum_{j=1}^l\mu_jd_j\\ &\sum_{i=1}^k\lambda_i=1,\lambda_i\ge0;i=1,\cdots,k\\ &\mu_j\ge0,j=1,\cdots,l \end{aligned}\end{equation} x=i=1∑kλixi+j=1∑lμjdji=1∑kλi=1,λi≥0;i=1,⋯,kμj≥0,j=1,⋯,l
3.3 应用
- 原问题:
如果我们有一个线性规划LP问题:
( L P ) min c T x s t . A x = b , x ≥ 0 \begin{equation}\begin{aligned} &(LP)\; \;\min\; c^Tx\\ &st.\;\;Ax=b,x\ge 0\\ \end{aligned}\end{equation} (LP)mincTxst.Ax=b,x≥0 - 等价问题:
min c T [ ∑ i = 1 k λ i x i + ∑ j = 1 l μ j d j ] ∑ i = 1 k λ i = 1 , λ i ≥ 0 ; i = 1 , ⋯ , k μ j ≥ 0 , j = 1 , ⋯ , l \begin{equation}\begin{aligned} &\; \;\min\; c^T[\sum_{i=1}^k\lambda_ix_i+\sum_{j=1}^l\mu_jd_j]\\ &\sum_{i=1}^k\lambda_i=1,\lambda_i\ge0;i=1,\cdots,k\\ &\mu_j\ge0,j=1,\cdots,l \end{aligned}\end{equation} mincT[i=1∑kλixi+j=1∑lμjdj]i=1∑kλi=1,λi≥0;i=1,⋯,kμj≥0,j=1,⋯,l - 整理可得:
min [ ∑ i = 1 k λ i c T x i + ∑ j = 1 l μ j c T d j ] ∑ i = 1 k λ i = 1 , λ i ≥ 0 ; i = 1 , ⋯ , k μ j ≥ 0 , j = 1 , ⋯ , l \begin{equation}\begin{aligned} &\; \;\min\;[\sum_{i=1}^k\lambda_i c^Tx_i+\sum_{j=1}^l\mu_j c^Td_j]\\ &\sum_{i=1}^k\lambda_i=1,\lambda_i\ge0;i=1,\cdots,k\\ &\mu_j\ge0,j=1,\cdots,l \end{aligned}\end{equation} min[i=1∑kλicTxi+j=1∑lμjcTdj]i=1∑kλi=1,λi≥0;i=1,⋯,kμj≥0,j=1,⋯,l - 其中
c
T
x
i
,
c
T
d
j
c^Tx_i,c^Td_j
cTxi,cTdj表示为一个数,那么整体为关于
λ
i
,
μ
i
\lambda_i,\mu_i
λi,μi的线性问题
– 若某个j, c T d j < 0 c^Td_j<0 cTdj<0,则 v ( L P ) = − ∞ v(LP)=-\infty v(LP)=−∞
– 若 c T d j ≥ 0 , ∀ j = 1 , ⋯ , l c^Td_j\ge0,\forall j=1,\cdots,l cTdj≥0,∀j=1,⋯,l,则 μ j = 0 \mu_j=0 μj=0 - 原问题
( L P ) min c T x s t . A x = b , x ≥ 0 \begin{equation}\begin{aligned} &(LP)\; \;\min\; c^Tx\\ &st.\;\;Ax=b,x\ge 0\\ \end{aligned}\end{equation} (LP)mincTxst.Ax=b,x≥0 - 转换为:
min λ i c T ∑ i = 1 k x i ∑ i = 1 k λ i = 1 , λ i ≥ 0 ; i = 1 , ⋯ , k \begin{equation}\begin{aligned} &\; \;\min\; \lambda_ic^T\sum_{i=1}^kx_i\\ &\sum_{i=1}^k\lambda_i=1,\lambda_i\ge0;i=1,\cdots,k\\ \end{aligned}\end{equation} minλicTi=1∑kxii=1∑kλi=1,λi≥0;i=1,⋯,k - 其实所到底就是直接求所有的边的最小值就行了,中间的值都没用。在特殊情况下只要求极点就行了。
3.4 小结:
考虑如下标准形式的线性规划:
(
L
P
)
min
c
T
x
s
t
.
A
x
=
b
,
x
≥
0
\begin{equation}\begin{aligned} &(LP)\; \;\min\; c^Tx\\ &st.\;\;Ax=b,x\ge 0\\ \end{aligned}\end{equation}
(LP)mincTxst.Ax=b,x≥0
其中,A行满秩,记其可行集为
S
=
{
x
∣
A
x
=
b
,
x
≥
0
}
S=\{x\big|Ax=b,x\ge0\}
S={x
Ax=b,x≥0},假设
S
=
{
x
∣
A
x
=
b
,
x
≥
0
}
S=\{x\big|Ax=b,x\ge0\}
S={x
Ax=b,x≥0}其极点分别为
x
1
,
x
2
,
⋯
,
x
k
x_1,x_2,\cdots,x_k
x1,x2,⋯,xk,其极方向分别为
d
1
,
d
2
,
⋯
,
d
l
d_1,d_2,\cdots,d_l
d1,d2,⋯,dl,则
结论:
- 1.线性规划(LP)有最优解当且仅当 c T d j ≥ 0 , j = 1 , ⋯ , l ; c^Td_j\ge0,j=1,\cdots,l; cTdj≥0,j=1,⋯,l;
- 2.若线性规划(LP)有最优解,则必可在某个极点上达到