最优化理论与方法-第十一讲-线性规划-极方向的刻画

1. 极方向定义

极方向是指从凸集的一点触发,无法被该点与其他店的连线所包含的方向。

  • 假设d是集合S的极方向,x是集合S的点,对于任意的 λ ≥ 0 \lambda \ge0 λ0,总存在:
    x ∈ S , S = { x ∣ A x = b , x ≥ 0 } ∀ λ ≥ 0 , ∃ d , x + λ d ≥ 0 , A ( x + λ d ) = b \begin{equation}\begin{aligned} &x\in S,S=\{x\big|Ax=b,x\ge0\}\\ &\forall \lambda\ge0,\exist d,x+\lambda d\ge0,A(x+\lambda d)=b\\ \end{aligned}\end{equation} xS,S={x Ax=b,x0}λ0,d,x+λd0,A(x+λd)=b
  • 由于 A ( x + λ d ) = b , A x = b , ∀ λ ≥ 0 A(x+\lambda d)=b,Ax=b,\forall \lambda \ge 0 A(x+λd)=b,Ax=b,λ0,可得 A d = 0 , d ≥ 0 Ad=0,d\ge0 Ad=0,d0
    在这里插入图片描述
  • 如果d是极方向,d不可有其他两个方向线性表出:
    d 是 S 的方向 ⟷ A d = 0 , d ≥ 0 d 是极方向 ⟷ d ≠ λ 1 d ˉ + λ 2 d ~ λ 1 > 0 , λ 2 > 0 , d ˉ , d ~ 是 S 的方向 \begin{equation}\begin{aligned} &d是S的方向 \longleftrightarrow Ad=0,d\ge0\\ &d是极方向\longleftrightarrow d\neq \lambda_1\bar{d}+\lambda_2\tilde{d}\\ &\lambda_1>0,\lambda_2>0,\bar{d},\tilde{d}是S的方向\\ \end{aligned}\end{equation} dS的方向Ad=0,d0d是极方向d=λ1dˉ+λ2d~λ1>0,λ2>0,dˉ,d~S的方向

2. 定理

2.1 概述

考虑多面体 S = { x ∣ A x = b , x ≥ 0 } S=\{x\big|Ax=b,x\ge 0\} S={x Ax=b,x0},这里假设 A m × n A_{m\times n} Am×n行满秩。

  • d ∈ R n d\in R^n dRn是S的极方向当且仅当存在矩阵A的分解A=(B,N),使得:
    d = t ( − B − 1 a j e j ) \begin{equation} d=t\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix} \end{equation} d=t B1ajej
    其中, t > 0 , B − 1 a j ≤ 0 , t>0,B^{-1}a_j\le0, t>0,B1aj0,, a j a_j aj为矩阵N的第 j j j列, e j ∈ R n − m e_j\in R^{n-m} ejRnm的第 j j j个分量为1,其余分量为0;
  • 有限个极方向

2.2 证明1

  • 已知:
    d = ( − B − 1 a j e j ) ≥ 0 , A = ( B , N ) , a j 为矩阵 N 的第 j 列 \begin{equation} d=\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}\ge 0,A=(B,N),a_j为矩阵N的第j列 \end{equation} d= B1ajej 0,A=(B,N),aj为矩阵N的第j
  • 证明: d方向是极方向
    -我们计算Ad
    A d = ( B , N ) ( − B − 1 a j e j ) = − a j + N e j \begin{equation} Ad=(B,N)\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}=-a_j+Ne_j \end{equation} Ad=(B,N) B1ajej =aj+Nej
  • 因为 a j a_j aj为矩阵N的第 j j j列, e j ∈ R n − m e_j\in R^{n-m} ejRnm的第 j j j个分量为1,其余分量为0,可得 − a j + N e j = 0 -a_j+Ne_j=0 aj+Nej=0
    A d = ( B , N ) ( − B − 1 a j e j ) = − a j + N e j = 0 \begin{equation} Ad=(B,N)\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}=-a_j+Ne_j=0 \end{equation} Ad=(B,N) B1ajej =aj+Nej=0
  • 可得d为集合S的方向。不妨设:
    d = λ 1 d ˉ + λ 2 d ~ , λ 1 > 0 , λ 2 > 0 , d ˉ , d ~ ∈ S \begin{equation} d=\lambda_1\bar{d}+\lambda_2\tilde{d},\lambda_1>0,\lambda_2>0,\bar{d},\tilde{d}\in S \end{equation} d=λ1dˉ+λ2d~,λ1>0,λ2>0,dˉ,d~S
  • 因为 , d ˉ , d ~ ∈ S ,\bar{d},\tilde{d}\in S ,dˉ,d~S可得如下:
  • 将方向进行分组可得:
    d ˉ = ( d B ˉ d N ˉ ) ; d ~ = ( d B ~ d N ~ ) \begin{equation} \bar{d}=\begin{pmatrix}\bar{d_B}\\\\\bar{d_N}\end{pmatrix};\tilde{d}=\begin{pmatrix}\tilde{d_B}\\\\\tilde{d_N}\end{pmatrix} \end{equation} dˉ= dBˉdNˉ ;d~= dB~dN~
  • 分别代入方程可得:
    ( − B − 1 a j e j ) = λ 1 ( d B ˉ d N ˉ ) + λ 2 ( d B ~ d N ~ ) \begin{equation} \begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}=\lambda_1\begin{pmatrix}\bar{d_B}\\\\\bar{d_N}\end{pmatrix}+\lambda_2\begin{pmatrix}\tilde{d_B}\\\\\tilde{d_N}\end{pmatrix} \end{equation} B1ajej =λ1 dBˉdNˉ +λ2 dB~dN~
  • 整理可得:
    e j = λ 1 d N ˉ + λ 2 d N ~ , λ 1 > 0 , λ 2 > 0 \begin{equation} e_j=\lambda_1\bar{d_N}+\lambda_2\tilde{d_N},\lambda_1>0,\lambda_2>0 \end{equation} ej=λ1dNˉ+λ2dN~λ1>0,λ2>0
  • e j ∈ R n − m e_j\in R^{n-m} ejRnm的第 j j j个分量为1,其余分量为0;
  • 可得, d N ˉ , d N ~ \bar{d_N},\tilde{d_N} dNˉdN~除了第j项外,其他分量为0,不然无法求和为0,这样两个方向就通向了,记如下:
    d N ˉ = t 1 e j ; d N ~ = t 2 e j , t 1 ≥ 0 , t 2 ≥ 0 \begin{equation} \bar{d_N}=t_1e_j;\tilde{d_N}=t_2e_j,t_1\ge0,t_2\ge0 \end{equation} dNˉ=t1ej;dN~=t2ej,t10,t20
  • 证明 t 1 ≠ 0 , t 2 ≠ 0 t_1\ne0,t_2\ne 0 t1=0,t2=0,假设 t 1 = 0 t_1=0 t1=0,可得 d N ˉ = 0 \bar{d_N}=0 dNˉ=0,因为 A d ˉ = 0 A\bar{d}=0 Adˉ=0
    A d ˉ = ( B , N ) ( d B ˉ 0 ) = B d B ˉ , A d ˉ = 0 → B d B ˉ = 0 , B 可逆 → , d B ˉ = 0 \begin{equation} A\bar{d}=(B,N)\begin{pmatrix}\bar{d_B}\\\\0\end{pmatrix}=B\bar{d_B},A\bar{d}=0\to B\bar{d_B}=0,B可逆\to,\bar{d_B}=0 \end{equation} Adˉ=(B,N) dBˉ0 =BdBˉ,Adˉ=0BdBˉ=0,B可逆,dBˉ=0
  • 我们可得方向向量d
    d ˉ = ( d B ˉ d N ˉ ) = ( 0 0 ) → 与方向向量不为零向量矛盾,所以 t 1 ≠ 0 , 同理 t 2 ≠ 0 \begin{equation} \bar{d}=\begin{pmatrix}\bar{d_B}\\\\\bar{d_N}\end{pmatrix}=\begin{pmatrix}0\\\\0\end{pmatrix}\to 与方向向量不为零向量矛盾,所以t_1\ne0,同理 t_2\ne0 \end{equation} dˉ= dBˉdNˉ = 00 与方向向量不为零向量矛盾,所以t1=0,同理t2=0
  • 可得: t 1 > 0 , t 2 > 0 t_1>0,t_2>0 t1>0,t2>0
  • 考虑 d ˉ \bar{d} dˉ是集合S的方向,所以可得 A d ˉ = 0 A\bar{d}=0 Adˉ=0,展开可得:
    A d ˉ = ( B , N ) ( d B ˉ d N ˉ ) = ( B , N ) ( d B ˉ t 1 e j ) = B d B ˉ + N t 1 e j = 0 \begin{equation} A\bar{d}=(B,N)\begin{pmatrix}\bar{d_B}\\\\\bar{d_N}\end{pmatrix}=(B,N)\begin{pmatrix}\bar{d_B}\\\\t_1e_j\end{pmatrix}=B\bar{d_B}+Nt_1e_j=0 \end{equation} Adˉ=(B,N) dBˉdNˉ =(B,N) dBˉt1ej =BdBˉ+Nt1ej=0
  • N t 1 e j = t 1 a j Nt_1e_j=t_1a_j Nt1ej=t1aj可得:
    B d B ˉ + t 1 a j = 0 → d B ˉ = − t 1 B − 1 a j \begin{equation} B\bar{d_B}+t_1a_j=0\to \bar{d_B}=-t_1B^{-1}a_j \end{equation} BdBˉ+t1aj=0dBˉ=t1B1aj
  • 我们知道 d N ˉ = t 1 e j \bar{d_N}=t_1e_j dNˉ=t1ej
    d ˉ = ( d B ˉ d N ˉ ) = ( − t 1 B − 1 a j t 1 e j ) = t 1 ( − B − 1 a j e j ) \begin{equation} \bar{d}=\begin{pmatrix}\bar{d_B}\\\\\bar{d_N}\end{pmatrix}=\begin{pmatrix}-t_1B^{-1}a_j\\\\t_1e_j\end{pmatrix}=t_1\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix} \end{equation} dˉ= dBˉdNˉ = t1B1ajt1ej =t1 B1ajej
  • 由已知条件:
    d = ( − B − 1 a j e j ) → d ˉ = t 1 d \begin{equation} d=\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}\to \bar{d}=t_1d \end{equation} d= B1ajej dˉ=t1d
  • 同理我们可以证明: d ~ = t 2 d \tilde{d}=t_2 d d~=t2d,也就是说,我们一开始选择两个方向的 d ˉ , d ~ \bar{d},\tilde{d} dˉ,d~,最后它们居然变成了同一个方向 d d d,与我们假设的不同方向矛盾,所以,这个方向就一定是极方向。

2.3 证明2

  • 已知: d 方向是极方向, A d = 0 , d ≥ 0 Ad=0,d\ge0 Ad=0,d0
  • 证明:
    d = ( − B − 1 a j e j ) ≥ 0 , A = ( B , N ) , a j 为矩阵 N 的第 j 列 \begin{equation} d=\begin{pmatrix}-B^{-1}a_j\\\\e_j\end{pmatrix}\ge 0,A=(B,N),a_j为矩阵N的第j列 \end{equation} d= B1ajej 0,A=(B,N),aj为矩阵N的第j
    – 证明:
    不妨设d的分量重由 k+1 个正的,其余为0
    d = ( d 1 d 2 ⋯ d k 0 t ⋯ 0 ) T ; d 1 , d 2 , ⋯   , d k , t ≥ 0 \begin{equation} d=\begin{pmatrix}d_1&d_2&\cdots&d_k&0&&t&\cdots&0\end{pmatrix}^T;d_1,d_2,\cdots,d_k,t\ge 0\end{equation} d=(d1d2dk0t0)Td1,d2,,dk,t0
  • 取对应的A的列 a 1 , a 2 , ⋯   , a k a_1,a_2,\cdots,a_k a1,a2,,ak,若 a 1 , a 2 , ⋯   , a k a_1,a_2,\cdots,a_k a1,a2,,ak
  • a 1 , a 2 , ⋯   , a k a_1,a_2,\cdots,a_k a1,a2,,ak相关,则存在不全为0的 θ 1 , θ 2 , ⋯   , θ k \theta_1,\theta_2,\cdots,\theta_k θ1,θ2,,θk使得:
    θ 1 a 1 + θ 2 a 2 + ⋯ + θ k a k = 0 \begin{equation} \theta_1a_1+\theta_2a_2+\cdots+\theta_ka_k=0 \end{equation} θ1a1+θ2a2++θkak=0
  • 构造 θ = ( θ 1 , θ 2 , ⋯   , 0 , ⋯   , 0 ) T ∈ R n \theta=(\theta_1,\theta_2,\cdots,0,\cdots,0)^T\in R^n θ=(θ1,θ2,,0,,0)TRn,取充分小的 ϵ > 0 \epsilon >0 ϵ>0,可得:
    d ˉ = d + ϵ θ ≥ 0 , d ~ = d − ϵ θ ≥ 0 → A d ˉ = 0 , A d ~ = 0 \begin{equation} \bar{d}=d+\epsilon\theta\ge0,\tilde{d}=d-\epsilon\theta\ge0\to A\bar{d}=0,A\tilde{d}=0 \end{equation} dˉ=d+ϵθ0,d~=dϵθ0Adˉ=0,Ad~=0
  • 由此可得: d = 1 2 d ˉ + 1 2 d ~ d=\frac{1}{2}\bar{d}+\frac{1}{2}\tilde{d} d=21dˉ+21d~,可知,d表示为另外两个方向的正组合,与d是极方向矛盾,所以可得:
    a 1 , a 2 , ⋯   , a k 不相关 → k ≤ m a_1,a_2,\cdots,a_k不相关\to k\le m a1,a2,,ak不相关km
    — 情况1:- 假设 k=m 可得:

d = ( d 1 d 2 ⋯ d k 0 t ⋯ 0 ) T ; d 1 , d 2 , ⋯   , d k , t ≥ 0 \begin{equation} d=\begin{pmatrix}d_1&d_2&\cdots&d_k&0&&t&\cdots&0\end{pmatrix}^T;d_1,d_2,\cdots,d_k,t\ge 0\end{equation} d=(d1d2dk0t0)Td1,d2,,dk,t0

  • 可得:
    d = ( d 1 d 2 ⋯ d m 0 t ⋯ 0 ) T ; \begin{equation}d=\begin{pmatrix}d_1&d_2&\cdots&d_m&0&&t&\cdots&0\end{pmatrix}^T;\end{equation} d=(d1d2dm0t0)T;
    d B = ( d 1 d 2 ⋯ d m ) T ; d N = t e j \begin{equation}d_B=\begin{pmatrix}d_1&d_2&\cdots&d_m\end{pmatrix}^T;d_N=te_j\end{equation} dB=(d1d2dm)T;dN=tej
  • B = ( a 1 , a 2 , ⋯   , a m ) T B=(a_1,a_2,\cdots,a_m)^T B=(a1,a2,,am)T,N为剩下的项,可得:
    因为 A d = 0 → 可得 ( B , N ) ( d B d N ) = B d B + N d N = B d B + t N e j = B d B + t a j = 0 \begin{equation} 因为 Ad=0\to可得 (B,N)\begin{pmatrix}d_B\\\\d_N\end{pmatrix}=Bd_B+Nd_N=Bd_B+tNe_j=Bd_B+ta_j=0 \end{equation} 因为Ad=0可得(B,N) dBdN =BdB+NdN=BdB+tNej=BdB+taj=0
  • 则可得:
    d B = t B − 1 a j ; d N = t e j ; d = ( d B d N ) \begin{equation} d_B=tB^{-1}a_j;d_N=te_j;d=\begin{pmatrix}d_B\\\\d_N\end{pmatrix} \end{equation} dB=tB1ajdN=tejd= dBdN
  • 整理可得:
    d = ( t B − 1 a j t e j ) = t ( B − 1 a j e j ) \begin{equation} d=\begin{pmatrix}tB^{-1}a_j\\\\te_j\end{pmatrix}=t\begin{pmatrix}B^{-1}a_j\\\\e_j\end{pmatrix} \end{equation} d= tB1ajtej =t B1ajej
    — 情况2:- 假设 k < m 可得:
  • 根据上面已证明可得 : a 1 , a 2 , ⋯   , a k 不相关 a_1,a_2,\cdots,a_k不相关 a1,a2,,ak不相关,则必然可以剩余的列【除了1,2,…,k列,t对应的列】,可以选 a k + 1 , ⋯   , a m a_{k+1},\cdots,a_m ak+1,,am
  • 使得 a 1 , ⋯   , a k , ⋯   , a m a_1,\cdots,a_k,\cdots,a_m a1,,ak,,am线性无关, B = ( a 1 , ⋯   , a m ) B=(a_1,\cdots,a_m) B=(a1,,am),N为剩余的列
  • d B = ( d 1 , ⋯   , d m ) , d N = ( 0 , 0 , ⋯   , t , 0 , ⋯   , 0 ) d_B=(d_1,\cdots,d_m),d_N=(0,0,\cdots,t,0,\cdots,0) dB=(d1,,dm),dN=(0,0,,t,0,,0)
  • 因为 Ad=0可得:
    A d = ( B , N ) ( d B d N ) = 0 → d = t ( B − 1 a j e j ) \begin{equation} Ad=(B,N)\begin{pmatrix}d_B\\\\d_N\end{pmatrix}=0\to d=t\begin{pmatrix}B^{-1}a_j\\\\e_j\end{pmatrix} \end{equation} Ad=(B,N) dBdN =0d=t B1ajej

3. 多面体的分解定理

多面体的分解定理:线性规划单纯形法的理论基础

3.1 定义:

假设S的极点为 x 1 , ⋯   , x k x_1,\cdots,x_k x1,,xk,极方向为 d 1 , ⋯   , d l d_1,\cdots,d_l d1,,dl,则 x ∈ S x\in S xS,当且仅当x具有如下形式:
x = ∑ i = 1 k λ i x i + ∑ j = 1 l μ j d j ∑ i = 1 k λ i = 1 , λ i ≥ 0 ; i = 1 , ⋯   , k μ j ≥ 0 , j = 1 , ⋯   , l \begin{equation}\begin{aligned} &x=\sum_{i=1}^k\lambda_ix_i+\sum_{j=1}^l\mu_jd_j\\ &\sum_{i=1}^k\lambda_i=1,\lambda_i\ge0;i=1,\cdots,k\\ &\mu_j\ge0,j=1,\cdots,l \end{aligned}\end{equation} x=i=1kλixi+j=1lμjdji=1kλi=1,λi0;i=1,,kμj0,j=1,,l

3.2 矩阵思路[仅供参考]个人思路:

  • d j d_j dj为极方向时,可得: A d j = 0 Ad_j=0 Adj=0,且 d j d_j dj是唯一的,其实可以看出 d j d_j dj是矩阵A的特征向量,我们知道 x i x_i xi为极点,这可以得到 A x i = b Ax_i=b Axi=b,这里的 x i x_i xi 其实本质上来说是矩阵Ax=b的特解,那么用线性代数的基本知识可得,Ax=b的通解为特解+零空间解
  • 那矩阵A里面的所有特解多少呢?
    一般来说,我一开始认为只是极点,其实不是,特解应该是所有极点的线性组合。就是所有的边,所以由点组成边的表达式是
    边 = ∑ i = 1 k λ i x i ; ∑ i = 1 k λ i = 1 \begin{equation}\begin{aligned} &边=\sum_{i=1}^k\lambda_ix_i;\sum_{i=1}^k\lambda_i=1\\ \end{aligned}\end{equation} =i=1kλixii=1kλi=1
  • 零空间的解为: ∑ j = 1 l μ j d j \sum_{j=1}^l\mu_jd_j j=1lμjdj
  • 综上所述,通解 = 特解 + 零空间解
    x = ∑ i = 1 k λ i x i + ∑ j = 1 l μ j d j ∑ i = 1 k λ i = 1 , λ i ≥ 0 ; i = 1 , ⋯   , k μ j ≥ 0 , j = 1 , ⋯   , l \begin{equation}\begin{aligned} &x=\sum_{i=1}^k\lambda_ix_i+\sum_{j=1}^l\mu_jd_j\\ &\sum_{i=1}^k\lambda_i=1,\lambda_i\ge0;i=1,\cdots,k\\ &\mu_j\ge0,j=1,\cdots,l \end{aligned}\end{equation} x=i=1kλixi+j=1lμjdji=1kλi=1,λi0;i=1,,kμj0,j=1,,l

3.3 应用

  • 原问题:
    如果我们有一个线性规划LP问题:
    ( L P )      min ⁡    c T x s t .      A x = b , x ≥ 0 \begin{equation}\begin{aligned} &(LP)\; \;\min\; c^Tx\\ &st.\;\;Ax=b,x\ge 0\\ \end{aligned}\end{equation} (LP)mincTxst.Ax=b,x0
  • 等价问题:
         min ⁡    c T [ ∑ i = 1 k λ i x i + ∑ j = 1 l μ j d j ] ∑ i = 1 k λ i = 1 , λ i ≥ 0 ; i = 1 , ⋯   , k μ j ≥ 0 , j = 1 , ⋯   , l \begin{equation}\begin{aligned} &\; \;\min\; c^T[\sum_{i=1}^k\lambda_ix_i+\sum_{j=1}^l\mu_jd_j]\\ &\sum_{i=1}^k\lambda_i=1,\lambda_i\ge0;i=1,\cdots,k\\ &\mu_j\ge0,j=1,\cdots,l \end{aligned}\end{equation} mincT[i=1kλixi+j=1lμjdj]i=1kλi=1,λi0;i=1,,kμj0,j=1,,l
  • 整理可得:
         min ⁡    [ ∑ i = 1 k λ i c T x i + ∑ j = 1 l μ j c T d j ] ∑ i = 1 k λ i = 1 , λ i ≥ 0 ; i = 1 , ⋯   , k μ j ≥ 0 , j = 1 , ⋯   , l \begin{equation}\begin{aligned} &\; \;\min\;[\sum_{i=1}^k\lambda_i c^Tx_i+\sum_{j=1}^l\mu_j c^Td_j]\\ &\sum_{i=1}^k\lambda_i=1,\lambda_i\ge0;i=1,\cdots,k\\ &\mu_j\ge0,j=1,\cdots,l \end{aligned}\end{equation} min[i=1kλicTxi+j=1lμjcTdj]i=1kλi=1,λi0;i=1,,kμj0,j=1,,l
  • 其中 c T x i , c T d j c^Tx_i,c^Td_j cTxi,cTdj表示为一个数,那么整体为关于 λ i , μ i \lambda_i,\mu_i λi,μi的线性问题
    – 若某个j, c T d j < 0 c^Td_j<0 cTdj<0,则 v ( L P ) = − ∞ v(LP)=-\infty v(LP)=
    – 若 c T d j ≥ 0 , ∀ j = 1 , ⋯   , l c^Td_j\ge0,\forall j=1,\cdots,l cTdj0,j=1,,l,则 μ j = 0 \mu_j=0 μj=0
  • 原问题
    ( L P )      min ⁡    c T x s t .      A x = b , x ≥ 0 \begin{equation}\begin{aligned} &(LP)\; \;\min\; c^Tx\\ &st.\;\;Ax=b,x\ge 0\\ \end{aligned}\end{equation} (LP)mincTxst.Ax=b,x0
  • 转换为:
         min ⁡    λ i c T ∑ i = 1 k x i ∑ i = 1 k λ i = 1 , λ i ≥ 0 ; i = 1 , ⋯   , k \begin{equation}\begin{aligned} &\; \;\min\; \lambda_ic^T\sum_{i=1}^kx_i\\ &\sum_{i=1}^k\lambda_i=1,\lambda_i\ge0;i=1,\cdots,k\\ \end{aligned}\end{equation} minλicTi=1kxii=1kλi=1,λi0;i=1,,k
  • 其实所到底就是直接求所有的边的最小值就行了,中间的值都没用。在特殊情况下只要求极点就行了。

3.4 小结:

考虑如下标准形式的线性规划:
( L P )      min ⁡    c T x s t .      A x = b , x ≥ 0 \begin{equation}\begin{aligned} &(LP)\; \;\min\; c^Tx\\ &st.\;\;Ax=b,x\ge 0\\ \end{aligned}\end{equation} (LP)mincTxst.Ax=b,x0
其中,A行满秩,记其可行集为 S = { x ∣ A x = b , x ≥ 0 } S=\{x\big|Ax=b,x\ge0\} S={x Ax=b,x0},假设 S = { x ∣ A x = b , x ≥ 0 } S=\{x\big|Ax=b,x\ge0\} S={x Ax=b,x0}其极点分别为 x 1 , x 2 , ⋯   , x k x_1,x_2,\cdots,x_k x1,x2,,xk,其极方向分别为 d 1 , d 2 , ⋯   , d l d_1,d_2,\cdots,d_l d1,d2,,dl,则
结论:

  • 1.线性规划(LP)有最优解当且仅当 c T d j ≥ 0 , j = 1 , ⋯   , l ; c^Td_j\ge0,j=1,\cdots,l; cTdj0,j=1,,l;
  • 2.若线性规划(LP)有最优解,则必可在某个极点上达到
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值