WC模拟(1.10) T1 Function

本篇博客详细解析了WC模拟赛T1题,该题实质上涉及数论问题和莫比乌斯反演。通过分析题目,将问题转化为求解特定质因数个数的约数,进一步利用莫比乌斯函数的性质,将原问题简化。博主提供了计算方法,包括求解约数个数的线筛和前缀和,以及利用莫比乌斯函数进行容斥原理的计算,最终实现了复杂度为O(n^(2/3))的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Function

题目背景:

1.10 WC模拟T1

分析:数论 + 莫比乌斯反演

 

将这种丧病的题出到T1,也就这个出题人想的出来······这道题的本质其实是spojdivcnt2,现在考虑直接推式子······


w(d)表示d的质因数个数,这一步的转化我们这么考虑,对于i2的约数,可以被分为两类,是i的约数也是i2的约数,是i的约数,但不是i的约数,那么我们考虑对于i的一个约数x,显然,x的每一个质因数的次幂,一定小于等于i的对应的质因数的次幂,那么我们对于x的某一个质因数的次幂加上i的对应质因数的次幂,即:pb能整除xpa能整除i,那么对于x * pa一定能够对应一个i2的约数,并且这个数一定不会是i的约数,考虑这意味着什么,我们可以对于x任意包含的一个质因数集合,加上对应的在i中的幂次,一定都可以得到一个i2的约数,并且不是i的约数,但是这个质因数x一定要原本包含,那么也就是x的可行的组成集合的元素为w(d)个,那么,可行的选择就有2w(d)种。我们可以发现:


考虑2w(d)的本质,相当于选择一个d的质因数集合,也就是d的不含平方质因子的因数的个数,考虑这类数的相同点就是莫比乌斯函数的值不为0,那么我们直接加莫比乌斯函数值的平方就好了,那么于是就化成了



g为右半边的式子,我们可以发现g(n)相当于1 ~ n的约数个数之和,那么我们可以通过线筛求出,也可以用sqrt(n)的时间直接计算,同样的对于左半边的式子相当于是莫比乌斯函数的平方的前缀和,考虑如何快速求解,我们可以发现原式就是求1 ~ n中不含有平方因子的数的个数,那么我们考虑容斥一下,用所有数先减去一个质数的平方的的倍数,再加上两个质数之积的平方的倍数,减去三个质数之积的平方的倍数······这也就相当于利用莫比乌斯函数容斥一下了所以我们可以得到


所以我们同样可以结合预处理和根号时间计算,考虑类似杜教筛的复杂度分析,我们可以知道预处理n2/3是最优的那么最后的复杂度就是O(n2/3)

 

Source:

/*
	created by scarlyw
*/
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <cctype>
#include <vector>
#include <set>
#include <queue>
#include <ctime>
#include <bitset>

inline char read() {
	static const int IN_LEN = 1024 * 1024;
	static char buf[IN_LEN], *s, *t;
	if (s == t) {
		t = (s = buf) + fread(buf, 1, IN_LEN, stdin);
		if (s == t) return -1;
	}
	return *s++;
}

///*
template<class T>
inline void R(T &x) {
	static char c;
	static bool iosig;
	for (c = read(), iosig = false; !isdigit(c); c = read()) {
		if (c == -1) return ;
		if (c == '-') iosig = true;	
	}
	for (x = 0; isdigit(c); c = read()) 
		x = ((x << 2) + x << 1) + (c ^ '0');
	if (iosig) x = -x;
}
//*/

const int OUT_LEN = 1024 * 1024;
char obuf[OUT_LEN], *oh = obuf;
inline void write_char(char c) {
	if (oh == obuf + OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf;
	*oh++ = c;
}

template<class T>
inline void W(T x) {
	static int buf[30], cnt;
	if (x == 0) write_char('0');
	else {
		if (x < 0) write_char('-'), x = -x;
		for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 + 48;
		while (cnt) write_char(buf[cnt--]);
	}
}

inline void flush() {
	fwrite(obuf, 1, oh - obuf, stdout);
}

/*
template<class T>
inline void R(T &x) {
	static char c;
	static bool iosig;
	for (c = getchar(), iosig = false; !isdigit(c); c = getchar())
		if (c == '-') iosig = true;	
	for (x = 0; isdigit(c); c = getchar()) 
		x = ((x << 2) + x << 1) + (c ^ '0');
	if (iosig) x = -x;
}
//*/

const int MAXN = 1000000 + 10;

int  prime_cnt, t, cur;
int prime[MAXN], min_cnt[MAXN];
long long miu[MAXN], sum[MAXN], f[MAXN];
bool not_prime[MAXN];

inline void seive() {
	not_prime[1] = true, miu[1] = 1, sum[1] = 1;
	for (int i = 2; i < MAXN; ++i) {
		if (!not_prime[i]) {
			prime[++prime_cnt] = i, miu[i] = -1;
			sum[i] = 2, min_cnt[i] = 1;
		}
		for (int j = 1; j <= prime_cnt && prime[j] * i < MAXN; ++j) {
			int cur = prime[j] * i;
			if (i % prime[j]) {
				miu[cur] = -miu[i], not_prime[cur] = true;
				sum[cur] = sum[i] * 2, min_cnt[cur] = 1;
			} else {
				miu[cur] = 0, not_prime[cur] = true;
				min_cnt[cur] = min_cnt[i] + 1;
				sum[cur] = sum[i] / min_cnt[cur] * (min_cnt[cur] + 1);
				break ;
			}
		}
	}
	for (int i = 1; i < MAXN; ++i) 
		f[i] += f[i - 1] + miu[i] * miu[i], sum[i] += sum[i - 1];
}

inline long long get_miu(int cur) {
	if (cur < MAXN) return f[cur];
	long long ans = 0;
	for (int i = 1, end = sqrt(cur); i <= end; ++i)
		ans += miu[i] * (cur / i / i);
	return ans;
}

inline long long get_sum(long long cur) {
	if (cur < MAXN) return sum[cur];
	long long ans = 0;
	for (int i = 1, last; i <= cur; i = last + 1) {
		last = cur / (cur / i);
		ans += (long long)(last - i + 1) * (long long)(cur / i);
	}
	return ans;
}

inline void solve(long long cur) {
	long long ans = 0;
	for (int i = 1, last; i <= cur; i = last + 1) {
		last = cur / (cur / i);
		ans += (get_miu(last) - get_miu(i - 1)) * get_sum(cur / i);
	}
	W(ans), write_char('\n');
}

int main() {
	freopen("function.in", "r", stdin);
	freopen("function.out", "w", stdout);
	R(t), seive();
	while (t--) R(cur), solve(cur);
	flush();
	return 0;
}


内容概要:本文详细介绍了QY20B型汽车起重机液压系统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文章首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文章深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保系统稳定可靠。此外,文章还详细计算了支腿油缸的受力、液压元件的选择及液压系统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压系统设计及相关领域的工程师和技术人员,以及对起重机技术感兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压系统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压系统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压系统设计的实用资料。 其他说明:本文不仅提供了详细的液压系统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压系统的设计原理和实现方法,为实际工程应用提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值