NOI模拟(5.14) JSOID1T1 潜入行动 (bzoj5314)

潜入行动

题目背景:

5.14 模拟 JSOI2018D1T1

分析:树型DP

 

比较显然的树型DP,定义dp[i][j][0/1][0/1]表示,以i为根的子树,子树内有j个监听设备,节点i是否被监听,节点i是否有监听设备,每次合并子树就可以了,注意for循环不要每次到k,循环到min(size[cur], k)就可以了。详见代码,复杂度O(nk2),听说是O(nk)的,但是我是证不了的······(反正跑得快就好。)

 

Source:

/*
    created by scarlyw
*/
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <cctype>
#include <vector>
#include <set>
#include <queue>
#include <ctime>
#include <bitset>
 
inline char read() {
    static const int IN_LEN = 1024 * 1024;
    static char buf[IN_LEN], *s, *t;
    if (s == t) {
        t = (s = buf) + fread(buf, 1, IN_LEN, stdin);
        if (s == t) return -1;
    }
    return *s++;
}
 
///*
template<class T>
inline void R(T &x) {
    static char c;
    static bool iosig;
    for (c = read(), iosig = false; !isdigit(c); c = read()) {
        if (c == -1) return ;
        if (c == '-') iosig = true; 
    }
    for (x = 0; isdigit(c); c = read()) 
        x = ((x << 2) + x << 1) + (c ^ '0');
    if (iosig) x = -x;
}
//*/

const int OUT_LEN = 1024 * 1024;
char obuf[OUT_LEN];
char *oh = obuf;
inline void write_char(char c) {
	if (oh == obuf + OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf;
	*oh++ = c;
}


template<class T>
inline void W(T x) {
	static int buf[30], cnt;
	if (x == 0) write_char('0');
	else {
		if (x < 0) write_char('-'), x = -x;
		for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 + 48;
		while (cnt) write_char(buf[cnt--]);
	}
}

inline void flush() {
    for (int i = 0; i <= 10; ++i) std::cout << obuf[i];
    std::cout << '\n';
	fwrite(obuf, 1, oh - obuf, stdout), oh = obuf;
}
 
/*
template<class T>
inline void R(T &x) {
    static char c;
    static bool iosig;
    for (c = getchar(), iosig = false; !isdigit(c); c = getchar())
        if (c == '-') iosig = true; 
    for (x = 0; isdigit(c); c = getchar()) 
        x = ((x << 2) + x << 1) + (c ^ '0');
    if (iosig) x = -x;
}
//*/

const int MAXN = 100000 + 5;
const int MAXK = 100 + 5;
const int mod = 1000000000 + 7;

int n, k, x, y;
int dp[MAXN][MAXK][2][2];
int size[MAXN];

std::vector<int> edge[MAXN];

inline void add_edge(int x, int y) {
    edge[x].push_back(y), edge[y].push_back(x);
}

inline void read_in() {
    R(n), R(k);
    for (int i = 1; i < n; ++i) R(x), R(y), add_edge(x, y);
}

inline void add(int &x, int t) {
    x += t, (x >= mod) ? (x -= mod) : (0);
}

inline void dfs(int cur, int fa) {
    static int temp[MAXK][2][2];
    size[cur] = 1, dp[cur][0][0][0] = dp[cur][1][0][1] = 1;
    for (int p = 0; p < edge[cur].size(); ++p) {
        int v = edge[cur][p];
        if (v == fa) continue ;
        dfs(v, cur);
        for (int i = 0, ie = std::min(size[cur] + size[v], k); i <= ie; ++i)
            temp[i][0][0] = temp[i][0][1] = temp[i][1][0] = temp[i][1][1] = 0;
        for (int i = 0, ie = std::min(size[cur], k); i <= ie; ++i)
            for (int j = 0, je = std::min(size[v], k - i); j <= je; ++j) {
                add(temp[i + j][0][0], (long long)dp[cur][i][0][0]
                     * dp[v][j][1][0] % mod);
                add(temp[i + j][0][1], (long long)dp[cur][i][0][1]
                     * (dp[v][j][0][0] + dp[v][j][1][0]) % mod);
                add(temp[i + j][1][0], ((long long)dp[cur][i][0][0]
                     * dp[v][j][1][1] + (long long)dp[cur][i][1][0]
                     * (dp[v][j][1][0] + dp[v][j][1][1])) % mod);
                long long x = (long long)dp[v][j][0][0] + dp[v][j][0][1]
                     + dp[v][j][1][0] + dp[v][j][1][1];
                add(temp[i + j][1][1], ((long long)dp[cur][i][0][1]
                     * (dp[v][j][0][1] + dp[v][j][1][1])
                     + x * dp[cur][i][1][1]) % mod); 
            }
        // std::cout << cur << '\n';
        for (int i = 0, ie = std::min(size[cur] + size[v], k); i <= ie; ++i) {
            dp[cur][i][0][0] = temp[i][0][0], dp[cur][i][0][1] = temp[i][0][1];
            dp[cur][i][1][0] = temp[i][1][0], dp[cur][i][1][1] = temp[i][1][1];
        }
        size[cur] += size[v];
    }
}

int main() {
    //freopen("action.in", "r", stdin);
    //freopen("action.out", "w", stdout);
    read_in();
    dfs(1, 0);
    long long ans = 0;
    ans = dp[1][k][1][0] + dp[1][k][1][1];
    std::cout << ans % mod;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值