在变空气阻力下的运动

    当空气阻力是恒定的时候,我们很好根据运动学定理求出 运动的距离等信息。

    当空气阻力是变化的时候我们怎么计算呢,这里设定 阻力 为 f = kv (k为阻力系数,且为负值),

    则 运动距离s和 给定初速度v0 以及 末速度v1的关系公式为 : s = m/k(v1 - v0) 

    即时速度v = v0 * exp(kt/m) (exp为e的指数)

    [具体推到公式 有时间补充]

dv/dt = kv/m  和 deltaV*deltaT=deltaS 根据这两个公式 加上积分 便可以导出上面的公式.

以下是一个简单的 Matlab 代码,用于模拟带有空气阻力的斜抛运动: ``` clear all; close all; clc; % 初始条件 v0 = 10; % 初速度(单位:m/s) theta = 45; % 发射角度(单位:度) g = 9.8; % 重力加速度(单位:m/s^2) rho = 1.225; % 空气密度(单位:kg/m^3) Cd = 0.5; % 球体阻力系数 m = 0.5; % 球体质量(单位:kg) % 计算初始速度分量 vx0 = v0 * cosd(theta); vy0 = v0 * sind(theta); % 模拟时间和时间步长 tmax = 10; % 模拟时间(单位:s) dt = 0.01; % 时间步长(单位:s) t = 0:dt:tmax; % 时间向量 % 初始化位置和速度向量 x = zeros(length(t), 1); y = zeros(length(t), 1); vx = zeros(length(t), 1); vy = zeros(length(t), 1); % 计算位置和速度向量 x(1) = 0; y(1) = 0; vx(1) = vx0; vy(1) = vy0; for i = 2:length(t) % 计算空气阻力 v = sqrt(vx(i-1)^2 + vy(i-1)^2); Fd = -0.5 * rho * Cd * pi * (0.1)^2 * v^2; % 计算加速度速度 ax = Fd / m * cosd(theta); ay = -g + Fd / m * sind(theta); vx(i) = vx(i-1) + ax * dt; vy(i) = vy(i-1) + ay * dt; % 计算位置 x(i) = x(i-1) + vx(i) * dt; y(i) = y(i-1) + vy(i) * dt; % 判断是否落地 if y(i) < 0 break; end end % 绘制轨迹图 plot(x(1:i), y(1:i)); xlabel('x(单位:m)'); ylabel('y(单位:m)'); title('带有空气阻力的斜抛运动轨迹'); ``` 代码中,首先定义了初始条件,包括初速度、发射角度、重力加速度、空气密度、球体阻力系数和球体质量。然后计算了初始速度分量。接下来,模拟了时间和时间步长,并初始化了位置和速度向量。在循环计算位置和速度时,每一步都计算了空气阻力,并根据空气阻力、重力加速度和水平方向上的加速度计算了速度和位置。同时,通过判断当前位置是否小于0来判断是否已经落地。最后,绘制了运动轨迹图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值