LRU算法
LRU(Least Recently Used), 最近最少使用算法
将最近一段时间内最少被访问过的行淘汰出局。
因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。
当需要替换时淘汰行计数器计数值最大的数据行出局。
这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出Cache,
提高Cache的利用率。
Java中的LinkedHashMap
此实现与 HashMap 的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。
此链接列表定义了迭代顺序,该迭代顺序通常就是将键插入到映射中的顺序(插入顺序)。
LinkedHashMap和TreeMap的区别
首先2个都是map,所以用key取值肯定是没区别的,区别在于用Iterator遍历的时候
LinkedHashMap保存了记录的插入顺序,先插入的先遍历到
TreeMap默认是按升序排,也可以指定排序的比较器。遍历的时候按升序遍历。
重写 removeEldestEntry(Map.Entry) 方法来实施策略,以便在将新映射关系添加到映射
时自动移除旧的映射关系。
链接的哈希映射具有两个影响其性能的参数:初始容量和加载因子。为初始容量选择
非常高的值对此类的影响比对 HashMap 要小,因为此类的迭代时间不受容量的影响。
利用LinkedHashMap实现LRU算法,主要是重写boolean removeEldestEntry(Map.Entry<K,V> eldest)
方法。
如果应该从映射移除最旧的条目,则返回 true;如果应该保留,则返回 false。
重写 removeEldestEntry(Map.Entry) 方法来实施策略,以便在将新映射关系添加到映射时自动移除旧的映射关系。
此方法可以提供在每次添加新条目时移除最旧条目的实现程序。如果映射表示缓存,则此方法非常有用:
它允许映射通过删除旧条目来减少内存损耗。
public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {
private static final long serialVersionUID = 2490814505277321242L;
private final int maxCapacity;
private static final float DEFAULT_LOAD_FACTOR = 0.75f;
private final Lock lock = new ReentrantLock();
public LRULinkedHashMap(int maxCapacity) {
super(maxCapacity, DEFAULT_LOAD_FACTOR, true);
this.maxCapacity = maxCapacity;
}
@Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
return size() > maxCapacity;
}
@Override
public V get(Object key) {
try {
lock.lock();
return super.get(key);
}finally {
lock.unlock();
}
}
public V put(K key, V value) {
try {
lock.lock();
return super.put(key, value);
} finally {
lock.unlock();
}
};
}
在缓存系统中,实现的算法,如下(常见的)
cahce算法cache algorithm或者叫替换算法:
1.最近最少使用算法 Least Recently Used (LRU):
最直观的结构应该是List,采取的算法是:每次访问一个元素后把这个元素放在 List一端,这样一来最远使用的
元素自然就被放到List的另一端。每次evict的时候就把那最远使用的元素remove掉。但是现实中常采用的数据
结构是HashMap + List。因为List太慢,List只能提供O(n)的算法,要使得它的add,remove和get的算法为O(1)
就必须使用HashMap。最简 单的实现就是利用JDK自带的LinkedHashMap,你可以把它看作普通的HashMap之外,
每个元素的key都用链表连接起来从而实现顺序结 构。LinkedHashMap默认的元素顺序是put的顺序,但是如果使
用带参数的构造函数,那么LinkedHashMap会根据访问顺序来调整内部 顺序。 LinkedHashMap的get()方法除了
返回元素之外还可以把被访问的元素放到链表的底端,这样一来每次顶端的元素就是remove的元素。
2. First In, First Out算法
这个比较直观,就是个Queue。但是还是为了保证O(1)的效率,还是要用LinkedHashMap。但是这次使用默认的无
参数的构造函数,LinkedHashMap内部使用的是put的顺序。因此每次remove顶端即可。
3. 使用次数最小算法 Least Frequently Used (LFU)
这 个算法的核心是每次访问元素的时候,这个元素的次数属性加1。所以每次remove操作就是次数属性最小的
元素。这次没法用LinkedHashMap来 实现了,因为LinkedHashMap没有接受comparator参数的功能。有些程序
是用LinkedList + HashMap来实现。这样add和get操作还是O(1),只是remove操作的时候先要排序然后再remove,
最快也就是O(n*log n),譬如利用快速排序。或者干脆在remove的时候只是做查找最小元素的算法来除去访问
次数最小的元素。
[备注],有些内容来自:http://blog.csdn.net/michaellufhl/article/details/6203666