- 博客(0)
- 资源 (14)
- 收藏
- 关注
Introduction to Global Optimization
Accurate modelling of real-world problems often requires nonconvex terms to be introduced in the
model, either in the objective function or in the constraints. Nonconvex programming is one of the
hardest fields of optimization, presenting many challenges in both practical and theoretical aspects.
The presence of multiple local minima calls for the application of global optimization techniques.
This paper is a mini-course about global optimization techniques in nonconvex programming; it deals
with some theoretical aspects of nonlinear programming as well as with some of the current state-
of-the-art algorithms in global optimization. The syllabus is as follows. Some examples of Nonlinear
Programming Problems (NLPs). General description of two-phase algorithms. Local optimization
of NLPs: derivation of KKT conditions. Short notes about stochastic global multistart algorithms
with a concrete example (SobolOpt). In-depth study of a deterministic spatial Branch-and-Bound
algorithm, and convex relaxation of an NLP. Latest advances in bilinear programming: the theory of
reduction constraints.
2013-07-25
Numerical Methods for Partial Differential Equations
Numerical Methods for Partial Differential Equations
2013-03-28
Computational Optimization (Chen, 2001)
Computational Optimization Computational Optimization
2010-01-28
Large-Scale Nonlinear Optimization (Nonconvex Optimization and Its Applications) (Gianni Di Pillo, Massimo Roma)
Large-Scale Nonlinear Optimization (Nonconvex Optimization and Its Applications) (Gianni Di Pillo, Massimo Roma)
2010-01-28
Global Optimization Using Interval Analysis - E. Hansen (CRC) WW
Global Optimization Using Interval Analysis - E. Hansen (CRC) WW
2010-01-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人