乖离率BIAS策略

一、乖离率的原理

乖离率的理论基础是对交易者的心里分析,当价格大于市场平均成本太多时,表示多头交易者获利越丰厚,容易萌生赚钱就走的念头,进而会造成价格下跌。当价格小于市场平均成本太多时,表示空头交易者获利丰厚,容易萌生赚钱就走的念头,进而会造成价格上涨。

  • 当价格向上偏离均线时,乖离率过大,未来价格有很大几率会下跌。
  • 当价格向下偏离均线时,乖离率过小,未来价格有很大几率会上涨。

虽然移动平均线是由价格计算而来,但从外在形式上价格一定会向移动平均线靠拢,或者说价格总是围绕着移动平均线上下波动。如果价格偏离均线太远,不管价格是在均线之上还是之下,最后都可能趋向于均线,而乖离率正是表示价格偏离均线的百分比值。

二、乖离率计算公式

乖离率=[(当日收盘价-N日平均价)/N日平均价]*100%

其中,N是移动均线参数,由于N的周期不同,乖离率的计算结果也不同。一般情况下N的取值是:6、12、24、36等等。在实际使用中,也可以根据不同的品种动态调整。但参数的选择十分重要,如果参数过小,乖离率就会过于敏感,如果参数过大,乖离率就会过于迟钝。乖离率的计算结果有正负之分,正的乖离率越大,代表多头获利越大,价格回调的概率越大。负的乖离率越大,代表空头获利越大,价格反弹的概率越大。

三、策略逻辑

由于乖离率是另一种均线的表现形式,那么我们也可以根据双均线策略改编一个双乖离率策略。通过短期乖离率与长期乖离率的位置关系,判断当前的市场状态。如果长期乖离率大于短期乖离率实际代表着短期均线金叉长期均线,反之亦然。

  • 多头开仓:如果当前无持仓,并且长期乖离率大于短期乖离率
  • 空头开仓:如果当前无持仓,并且长期乖离率小于短期乖离率
  • 多头平仓:如果当前持多单,并且长期乖离率小于短期乖离率
  • 空头平仓:如果当前持空单,并且长期乖离率大于短期乖离率

四、代码实现:有时间再搞啦

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值