自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 数据集预处理

脑电数据的预处理,再放到模型上去训练

2026-01-27 16:04:10 12

原创 解决 matlab安装BioSig工具箱的问题

在官网上下载的BCI4-2a数据集为gdf格式,需要转成mat格式,才能放到模型中训练,选择第一行,下载64位的版本,下载后,解压到一个文件夹中(随便哪里都可以)。进行安装,会提示一些警告信息,这是因为我们下载的是精简包,不是出问题了。可以看到有biosig_installer.m文件,在命令行输入。然后打开matlab,点击这个按钮,定位到刚刚你解压的文件夹。所以需要下载BioSig工具来转换格式。

2026-01-10 17:40:24 152

原创 Pycharm运行出现OSError: [WinError 1114] 动态链接库(DLL)初始化例程失败。解决办法

我发现用Vscode,切换到同一个conda环境,就可以正常的输出true,模型也可以正常训练,没有出问题,VScode牛逼。结果我在Pycharm里面就显示OSError: [WinError 1114] 动态链接库(DLL)初始化例程失败。最近,我在用Pycharm复现论文的时候,前面的什么conda虚拟环境,torch都安装好了,在命令行调用。最后也是成功解决了这个困扰了我2个小时的问题,玩牛魔。网上的那些方法都试过了没有用,

2026-01-06 23:06:32 462

原创 情绪识别论文精读

情绪识别是基于多模态输入信号(生理信号、行为信号、语音信号等),利用信号处理、机器学习或深度学习等技术,从中提取特征并判断个体情绪状态的交叉学科研究课题。本文提出的基于脑功能连接的线性-非线性特征重建网络,通过全面提取线性与非线性特征、引入FSRE和FIR模块,有效解决了传统方法特征单一、交互不足的问题。在SEED和SEED-IV数据集上取得了不错的结果。

2025-12-17 20:05:35 908

原创 机器学习第六章:支持向量机

让这个超平面容忍一些错误的分类,也就是在计算损失的时候,如果这个损失在一个区间内,那么我们就认为它是分类正确的。如果在这个区间外,那么我们就根据这个损失,反向传播去更新参数。有一个分类任务的样本集,我们想要在样本空间中找到一个划分超平面,把不同类别的样本分开。,让它不被训练样本里面的个别样本所干扰,这样子得到的分类结果的鲁棒性会是最好的,泛化能力最好。但如果不存在一个超平面,可以把训练样本正确分类的话,我们就需要把这个样本空间给。的问题,为了缓解这个问题,我们需要让这个超平面。

2025-10-31 15:15:39 170

原创 机器学习第五章:神经网络

神经网络通过模拟生物神经系统构建数学模型,核心是加权连接的神经元和激活函数(如Sigmoid)实现非线性变换。感知机作为线性二分类模型,通过误差反馈机制更新权重和阈值,解决逻辑运算问题。对于非线性问题,需引入含隐层的多层前馈网络,采用误差逆传播算法(BP)进行训练,结合累计误差优化和梯度下降调整参数。为防止过拟合,可采用早停策略和正则化方法。这些机制共同构成了神经网络学习复杂模式的基础框架。

2025-10-23 20:19:25 755

原创 机器学习第四章:决策树

决策树就是来对问题进行判断的过程,类似于我们人的脑回路的流程。以二分类问题为例,一个样本有很多个属性,我们依次对每个属性进行判断,只有这个属性满足正类的特征,我们才判断下一个属性,最后得出最终结论:这个样本是不是正类。一个决策树包含一个根节点,多个叶节点,多个内部节点。根节点包含样本全集,内节点对应一个属性测试,。决策树学习的目的就是为了产生一棵泛化能力强的决策树,我们希望用它来帮我们做决策。那么怎么构建决策树呢,根据不同的指标来构建就产生了不同的算法。ID3算法这个算法是根据来构建的。

2025-09-11 20:47:17 645

原创 机器学习第三章:线性模型

假设一个数据集:D={(x1,y1),(x2,y2),...(xn,yn)} ,其中yi为0或1。每次对n个类做m次划分,这样可以产生m个训练集,进而可以训练出m个分类器,再用这m个分类器对测试样本进行预测,把预测的结果组成一个编码,将预测编码与每个类别各自的编码进行比较,把距离最小的类别作为最终的结果。假设一个数据集:D={(x1,y1),(x2,y2),...(xm,ym)} ,yi属于{C1,C2,...,Cn};这个方法是每次一个类的样例作为例,其余的类作为反例,最后可以训练n个分类器。

2025-08-28 21:23:15 765

原创 脑电分析第二章:脑电信号的预处理

眨眼的时候产生的噪声幅度大,而眼球转动产生的噪声频率范围比较宽,在研究的时候,我们需要先测量眼电信号,以便后面去除眼动伪迹。测出眼动和眨眼的时候的脑电信号和眼电信号,再利用正交原理把这些信号变换为另一组相互独立的信号,作为眼动和眨眼伪迹的主成分,然后从混合信号中去除这个成分,就可以得到矫正后的信号。在脑电的测量中,被测人体无法避免会进行眨眼和眼球运动,这些运动会改变头皮的电场分布,当被头皮上的电极所拾取的时候,就会产生。而理论上可以认为眼动伪迹以及其他干扰源产生的干扰信号是由相互独立的信源产生的,通。

2025-08-28 02:06:12 453

原创 脑电分析第一章:脑电信号

我们人的神经元动作电位是通过Na,K,Ca等离子的离子通道的开闭来传导电信号,波的周期约为1-2ms。我们要选合适的人来采集他们的脑电信号,要注意他们的性别,年龄,社会背景,受教育情况,左撇子还是右撇子,有时候还需要设置对照组,在对结果进行统计分析。的研究越来越受到研究人员的重视,脑机接口可以在人脑和其他电子设备间建立起直接的交流和控制通道,是一种全新的对外信息交流方式。正是因为神经元同时放电,同时停止,排列方向一致,当这些神经细胞同步活动的时候会产生强大的电场,从这个电场中可以记录。

2025-08-20 02:36:24 430

原创 机器学习第二章:模型评估与选择

把数据集平均分为k个子集(k一般取10),每次取第i个子集作为测试集(i从1,2 一直取到k),剩下的作为训练集,得到测试结果后。重复k次后,取平均值。将数据集随机分为互斥的测试集和训练集,差不多把66%~80%的数据作为训练,剩下的用作测试,进而得到测试误差。来计算,他会服从自由度为k-1个和( k-1)*(N-1)的F分布,如果所有算法的性能都相同的假设被拒绝,这就需要后续检验比如。对于二分类问题,我们可以使用留出法,这样可以计算两个模型的测试错误率,还可以得到两者都正确,一个正确一个错误的样本数。

2025-08-17 22:21:19 726

原创 机器学习第一章:绪论

训练模型的时候使用的样本叫做训练样本,组成的集合称为训练集,我们得到的模型对应了数据的某种规律,称为假设。,以便于在面对新出现的情况时做出相应的判断,做出的判断越正确,那就说明这个模型很好适用于新样本,这就是泛化能力。训练的样本越多,获得强泛化能力的模型的概率越大。奥卡姆剃刀原则:若有多个假设与观察一致,则选择最简单的那个”,这是最基本的原则。每个有效的机器学习算法一定要有归纳偏好,否则无法产生确定的学习结果。根据结果的类别,又有。,比如预测一个西瓜的成熟度,结果可以取0 ~100%这个区间的所有值。

2025-08-17 17:04:29 205

原创 链表 原来如此简单

链表

2022-04-03 23:15:49 700

原创 c语言-----数组入门

c语言-----数组的学习首先在学习之前我们会问数组是什么我们为什么要学习数组数组是在 程序设计 中,为了处理方便, 把具有相同类型的若干元素按有序的形式组织起来的一种形式, 这些有序排列的同类数据元素的集合称为数组数组在c语言及其其他高级语言中都是非常重要的学好它有利于我们c语言的学习声明数组要使用一个数组,首先我们应该要去声明它type arrayName [ arraySize ];数组的类型数组的名字中括号里面是数组的大小根据类型的不同 我们可以分为整形数组浮

2021-11-12 22:45:17 1752

原创 c语言代码:格式化输出一颗爱心!

如图:不管了,先放代码!解析在后面。#include<stdio.h>int main(void){ int a, b, c, d, e; for (a = 1; a <= 3; a++) { for (b = 1; b<=1+2*abs(3-a); b++) { printf(" "); } for (c = 1; c <=6+4*(a-1);...

2021-10-24 16:39:06 11245 13

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除