BZOJ 1600 建造栅栏

来源

USACO 2008 资格赛

Description

勤奋的Farmer John想要建造一个四面的栅栏来关住牛们。他有一块长为n(4<=n<=2500)的木板,他想把这块本板切成4块。这四块小木板可以是任何一个长度只要Farmer John能够把它们围成一个合理的四边形。他能够切出多少种不同的合理方案。注意: *只要大木板的切割点不同就当成是不同的方案(像全排列那样),不要担心另外的特殊情况,go ahead。 *栅栏的面积要大于0. *输出保证答案在longint范围内。 *整块木板都要用完。

Input

*第一行:一个数n

Output

*第一行:合理的方案总数

Sample Input

6

Sample Output

6


输出详解:

Farmer John能够切出所有的情况为: (1, 1, 1,3); (1, 1, 2, 2); (1, 1, 3, 1); (1, 2, 1, 2); (1, 2, 2, 1); (1, 3,1, 1);
(2, 1, 1, 2); (2, 1, 2, 1); (2, 2, 1, 1); or (3, 1, 1, 1).
下面四种 -- (1, 1, 1, 3), (1, 1, 3, 1), (1, 3, 1, 1), and (3,1, 1, 1) – 不能够组成一个四边形.

构成四边形的几何约束条件:设该四边形边长分别为a,b,c,d
则必须有 a+b+c>d      a+b+d>c      a+c+d>b      b+c+d>a
对该不等式进行变形 能得出以下结论
在一个严格的平面四边形中,任意一边的边长必须小于周长的1/2.

得到这个结论后,动态规划的思路就有了
设f[i][j]表示选取前i块木板,得到总长为j的方案,则有
f[i][j]+=f[i-1][j-k] (1<=i<=4  1<=j<=n  1<=k<=min(j,C/2-1));
#include<iostream>
#include<cstdio>
using namespace std;
int n,midc,f[5][2600];
int main(){
	f[0][0]=1;
	scanf("%d",&n);
	int midc=(n+1)/2-1;
	for(int i=1;i<=4;i++)
	    for(int j=1;j<=n;j++)
		    for(int k=1;k<=min(midc,j);k++)
			    f[i][j]+=f[i-1][j-k];
       printf("%d",f[4][n]);
       return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值