B4172 学习计划 题解

B4172 学习计划 题解

思路

可以将收益式子换一下,设 c i c_i ci a i a_i ai 被分到的段的编号,那收益式子变成 ∑ i = 1 n a i × b c i \sum_{i=1}^n a_i \times b_{c_i} i=1nai×bci

很显然的 dp, 设 f i , j f_{i,j} fi,j 为将 a a a 的前 i i i 个数分成 j j j 段的最大收益。

那现在有两种选择。

  1. a i − 1 a_{i-1} ai1 选的是第 j j j 段,这样的收益是 f i − 1 , j + a i × b j f_{i-1,j}+a_i\times b_j fi1,j+ai×bj
  2. a i − 1 a_{i-1} ai1 选的是第 j − 1 j-1 j1 段,这样的收益是 f i − 1 , j − 1 + a i × b j f_{i-1,j-1}+a_i\times b_j fi1,j1+ai×bj

整理一下就能得到转移方程 f i , j = max ⁡ ( f i − 1 , j , f i − 1 , j − 1 ) + a i × b j f_{i,j}= \max (f_{i-1,j},f_{i-1,j-1})+a_i\times b_j fi,j=max(fi1,j,fi1,j1)+ai×bj

由于有负数,初始值要设为 − inf ⁡ -\inf inf f 0 , 0 f_{0,0} f0,0 设为 0 0 0

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N = 2010;
int a[N], b[N];
int f[N][N];
void run() {
	memset(f, -0x3f, sizeof(f));
	int n, m;
	cin >> n >> m;
	for (int i = 1; i <= n; i++) cin >> a[i];
	for (int i = 1; i <= m; i++) cin >> b[i];
	f[0][0] = 0;
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= min(i, m); j++)
			f[i][j] = max(f[i - 1][j - 1], f[i - 1][j]) + a[i] * b[j];
	cout << f[n][m] << endl;
}
int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int _ = 1;
	cin >> _;
	while (_--) run();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值