求1~n中每个数与n的最大公约数的和
我的方法,先因式分解n,然后dfs求出n的所有约数,与n的最大公约数一定是n的某个因数,我们只要知道对每个d|n,gcd(i,n)=d,1<=i<=n,有几个i满足,即1~n中与n的最大公约数为d的数字的个数就好了,而这个个数正好是PHI(n/d),PHI为欧拉函数
网上看到别人一个利用积性函数解决的
http://scturtle.is-programmer.com/posts/19388.html
在数论中的积性函数:对于正整数n的一个函数 f(n),当中f(1)=1且当a,b互质,f(ab)=f(a)f(b),在数论上就称它为积性函数。若某函数f(n)符合f(1)=1,且就算a,b不互质,f(ab)=f(a)f(b),则称它为完全积性函数。
欧拉函数,gcd(n,k)(当k固定时)都是积性函数
且当i,j互素时,gcd(i*j,m)=gcd(i,m)*gcd(j,m),所以gcd(n,k)是积性函数
同时,积性函数的和也是积性函数
n=a1^k1*a2^k2*...*am^km,且ai^ki与aj^kj互素(i!=j)
所以,F(n)=F(a1^k1,n)*F(a2^k2,n)*...*F(am^km,n)
而F(a^k)=∑a^k*PHI(a^(k-i)) 0<=i<=k
我的代码: