POJ 2480 Longge's Problem

22 篇文章 0 订阅

求1~n中每个数与n的最大公约数的和

我的方法,先因式分解n,然后dfs求出n的所有约数,与n的最大公约数一定是n的某个因数,我们只要知道对每个d|n,gcd(i,n)=d,1<=i<=n,有几个i满足,即1~n中与n的最大公约数为d的数字的个数就好了,而这个个数正好是PHI(n/d),PHI为欧拉函数

 

网上看到别人一个利用积性函数解决的

http://scturtle.is-programmer.com/posts/19388.html

在数论中的积性函数:对于正整数n的一个函数 f(n),当中f(1)=1且当a,b互质,f(ab)=f(a)f(b),在数论上就称它为积性函数。若某函数f(n)符合f(1)=1,且就算a,b不互质,f(ab)=f(a)f(b),则称它为完全积性函数。

 

欧拉函数,gcd(n,k)(当k固定时)都是积性函数

 

且当i,j互素时,gcd(i*j,m)=gcd(i,m)*gcd(j,m),所以gcd(n,k)是积性函数

同时,积性函数的和也是积性函数

 

n=a1^k1*a2^k2*...*am^km,且ai^ki与aj^kj互素(i!=j)

所以,F(n)=F(a1^k1,n)*F(a2^k2,n)*...*F(am^km,n)

而F(a^k)=∑a^k*PHI(a^(k-i)) 0<=i<=k

 

我的代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值