POJ 1946 Cow Cycling

定义dp[i][j][k]表示第i头牛领头,此时消耗j点能量,走了k圈的最少时间

如果此时更换领头的牛,dp[i][k][k]=min{dp[i-1][j][k],dp[i][k][k]}

否则,dp[i][j][k]=min{dp[i][j][k],dp[i][j-sqr(x)][k-x]+1}

状态定义完后凭空想转移不好想,对着题目给的策略自己手推了下第一头牛和第二头牛的式子,马上就能写出方程了:)

最后枚举下答案dp[i][j][d]就行

代码:

#include<iostream>
#include<memory.h>
#include<string>
#include<cstdio>
#include<algorithm>
#include<math.h>
#include<stack>
#include<queue>
#include<vector>
#include<map>
#include<ctime>
using namespace std;
const int inf=1<<30;
int dp[21][101][101];
int sqr[11]={1,4,9,16,25,36,49,64,81,100};
int main()
{
	int i,j,k,l,n,e,d;
	while(scanf("%d%d%d",&n,&e,&d)!=EOF)
	{
		for(i=0;i<=n;i++)
		{
			for(j=0;j<=e;j++)
			{
				for(k=0;k<=d;k++)
					dp[i][j][k]=inf;
			}
		}
		dp[0][0][0]=0;
		for(i=1;i<=n;i++)
		{
			for(j=0;j<=e;j++)
			{
				for(k=0;k<=d;k++)
				{
					if(dp[i-1][j][k]!=inf)
						dp[i][k][k]=min(dp[i][k][k],dp[i-1][j][k]);
				}
			}
			for(j=1;j<=e;j++)
			for(k=1;k<=d;k++)
			{ 
				for(l=0;l<10;l++)
				{
					if(j>=sqr[l]&&k>=l+1)
					{
						dp[i][j][k]=min(dp[i][j][k],dp[i][j-sqr[l]][k-l-1]+1);
					}
					else
						break;
				}
			}
		}
		int ans=inf;
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=e;j++)
			{
				if(dp[i][j][d]<ans)
					ans=dp[i][j][d];
			}
		}
		printf("%d\n",ans);
	}
	return 0;
}
				


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值