题目:
现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本。
输入格式:
输入数据包括城镇数目正整数N(≤1000)和候选道路数目M(≤3N);随后的M行对应M条道路,每行给出3个正整数,分别是该条道路直接连通的两个城镇的编号以及该道路改建的预算成本。为简单起见,城镇从1到N编号。
输出格式:
输出村村通需要的最低成本。如果输入数据不足以保证畅通,则输出−1,表示需要建设更多公路。
输入样例:
6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3
输出样例:
12
并查集
按照公路花费升序排序,然后遍历每一条路,如果两村落不相通,就建立关系。
最后判断一号村落和其他村落之间有无联系即可
#include<bits/stdc++.h>
using namespace std;
struct Road
{
int start,over;
int num;
}road[3005];
int father[1005];
int n,m,sum=0;
void init()
{
cin>>n>>m;
for(int i=0;i<m;i++)
{
cin>>road[i].start>>road[i].over>>road[i].num;
}
for(int i=0;i<n;i++)
father[i]=i;
}
bool cmp(Road a,Road b)
{
return a.num<b.num;
}
int find(int x)
{
if(x!=father[x])
father[x]=find(father[x]);
return father[x];
}
void solve()
{
sort(road,road+m,cmp);
for(int i=0;i<m;i++)
{
if(find(road[i].start)!=find(road[i].over))
{
int x=find(road[i].start);
int y=find(road[i].over);
father[x]=y;
sum+=road[i].num;
}
}
for(int i=2;i<=n;i++)
{
if(find(i)!=find(1))
{
cout<<-1<<endl;
return;
}
}
cout<<sum;
}
int main()
{
//freopen("in.txt","r",stdin);
init();
solve();
return 0;
}
每天进步一点点,十天进步十点点,加油!
更多PTA代码请到我的博客里参考
ps:代码仅供参考,请勿抄袭