一.使用OpenCv加载一幅图像

这篇博客介绍了如何使用OpenCV库加载图像,作者分享了自己学习计算机视觉和图像处理的初体验,并强调OpenCV的跨平台特性和丰富的语言接口。文章适合计算机视觉初学者阅读。
摘要由CSDN通过智能技术生成

       本栏目记录本人学习使用OpenCv图像处理技术的一些总结。都是一些基础的操作,本人也是初学,其实也很感谢学校的崔老师,一个非计算机专业的搞这些东西,认识我的朋友都说我脑子进水,我觉得也是,不过总比他们脑子里什么都没有的好。。。

        OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了计算机视觉和图像处理方面的很多通用算法。

        应用领域:

1、人机互动  
2、物体识别
OpenCV中,用于纹理特征提取的底层源代码通常涉及到SIFT (Scale-Invariant Feature Transform) 或 SURF (Speeded Up Robust Features) 等算法。这里简单解释一下这两种常见的方法,并给出一些关键步骤。 1. SIFT (尺度不变特征变换): - **计算尺度空间**:首先,对图像进行高斯金字塔构建,以便处理不同尺度下的边缘检测。 - **DoG (Difference of Gaussians)**:使用高斯差分算子寻找极值点,即关键点。 - **尺度空间极值检测**:通过尺寸空间的梯度矩阵和边界条件来确定关键点的位置和方向。 - **描述符生成**:在每个关键点附近构造局部图像块,然后应用小波变换或像差直方图生成SIFT描述符。 2. SURF (快速稳健特征): - **Haar-like特征算子**:快速计算图像的小波响应,类似于SIFT的高斯差分。 - **Hessian矩阵**:类似SIFT,但只对关键点周围的局部区域进行Hessian矩阵分析,减少计算量。 - **Keypoint定位和描述符**:找到关键点并计算SURF描述符,这些描述符是加速二进制码形式,便于匹配。 以下是Python代码示例片段(简化版): ```python import cv2 # 加载图像 img = cv2.imread('image.jpg', 0) # 初始化SIFT或SURF对象 sift = cv2.xfeatures2d.SIFT_create() surf = cv2.xfeatures2d.SURF_create() # 找到关键点及其描述符 kp_sift, des_sift = sift.detectAndCompute(img, None) kp_surf, des_surf = surf.detectAndCompute(img, None) # 可视化结果(如果需要) img_with_keypoints = cv2.drawKeypoints(img, kp_sift, np.array([]), color=(0,255,0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) cv2.imshow("SIFT keypoints", img_with_keypoints) cv2.waitKey(0) ``` 请注意,这只是一个简化的例子,实际应用中会涉及更多的细节,比如匹配、存储和检索等。如果你想查看OpenCV库中的源代码,可以查阅其GitHub仓库:https://github.com/opencv/opencv
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值